Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph GAT - Genomic Association Tester

GAT: Genomic Association Tester ============================================== A common question in genomic analysis is whether two sets of genomic intervals overlap significantly. This question arises, for example, in the interpretation of ChIP-Seq or RNA-Seq data. The Genomic Association Tester (GAT) is a tool for computing the significance of overlap between multiple sets of genomic intervals. GAT estimates significance based on simulation. Gat implemements a sampling algorithm. Given a chromosome (workspace) and segments of interest, for example from a ChIP-Seq experiment, gat creates randomized version of the segments of interest falling into the workspace. These sampled segments are then compared to existing genomic annotations. The sampling method is conceptually simple. Randomized samples of the segments of interest are created in a two-step procedure. Firstly, a segment size is selected from to same size distribution as the original segments of interest. Secondly, a random position is assigned to the segment. The sampling stops when exactly the same number of nucleotides have been sampled. To improve the speed of sampling, segment overlap is not resolved until the very end of the sampling procedure. Conflicts are then resolved by randomly removing and re-sampling segments until a covering set has been achieved. Because the size of randomized segments is derived from the observed segment size distribution of the segments of interest, the actual segment sizes in the sampled segments are usually not exactly identical to the ones in the segments of interest. This is in contrast to a sampling method that permutes segment positions within the workspace.

https://github.com/datirium/workflows.git

Path: workflows/gat-run.cwl

Branch/Commit ID: 92f1a6da9c4f85fb51340b01b32373a50fde0891

workflow graph heatmap-prepare.cwl

Workflow runs homer-make-tag-directory.cwl tool using scatter for the following inputs - bam_file - fragment_size - total_reads `dotproduct` is used as a `scatterMethod`, so one element will be taken from each array to construct each job: 1) bam_file[0] fragment_size[0] total_reads[0] 2) bam_file[1] fragment_size[1] total_reads[1] ... N) bam_file[N] fragment_size[N] total_reads[N] `bam_file`, `fragment_size` and `total_reads` arrays should have the identical order.

https://github.com/datirium/workflows.git

Path: subworkflows/heatmap-prepare.cwl

Branch/Commit ID: a7b031090f49ab52195a561c162b326998028a35

workflow graph RNA-Seq pipeline paired-end stranded mitochondrial

Slightly changed original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for **strand specific pair-end** experiment. An additional steps were added to map data to mitochondrial chromosome only and then merge the output. Experiment files in [FASTQ](http://maq.sourceforge.net/fastq.shtml) format either compressed or not can be used. Current workflow should be used only with the pair-end strand specific RNA-Seq data. It performs the following steps: 1. `STAR` to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. `fastx_quality_stats` to analyze input FASTQ file and generate quality statistics file 3. `samtools sort` to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using `GEEP` reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-pe-dutp-mitochondrial.cwl

Branch/Commit ID: 92f1a6da9c4f85fb51340b01b32373a50fde0891

workflow graph heatmap-prepare.cwl

Workflow runs homer-make-tag-directory.cwl tool using scatter for the following inputs - bam_file - fragment_size - total_reads `dotproduct` is used as a `scatterMethod`, so one element will be taken from each array to construct each job: 1) bam_file[0] fragment_size[0] total_reads[0] 2) bam_file[1] fragment_size[1] total_reads[1] ... N) bam_file[N] fragment_size[N] total_reads[N] `bam_file`, `fragment_size` and `total_reads` arrays should have the identical order.

https://github.com/datirium/workflows.git

Path: subworkflows/heatmap-prepare.cwl

Branch/Commit ID: e238d1756f1db35571e84d72e1699e5d1540f10c

workflow graph THOR - differential peak calling of ChIP-seq signals with replicates

What is THOR? -------------- THOR is an HMM-based approach to detect and analyze differential peaks in two sets of ChIP-seq data from distinct biological conditions with replicates. THOR performs genomic signal processing, peak calling and p-value calculation in an integrated framework. For more information please refer to: ------------------------------------- Allhoff, M., Sere K., Freitas, J., Zenke, M., Costa, I.G. (2016), Differential Peak Calling of ChIP-seq Signals with Replicates with THOR, Nucleic Acids Research, epub gkw680.

https://github.com/datirium/workflows.git

Path: workflows/rgt-thor.cwl

Branch/Commit ID: 7518b100d8cbc80c8be32e9e939dfbb27d6b4361

workflow graph QuantSeq 3' FWD, FWD-UMI or REV for single-read mRNA-Seq data

### Devel version of QuantSeq 3' FWD, FWD-UMI or REV for single-read mRNA-Seq data

https://github.com/datirium/workflows.git

Path: workflows/trim-quantseq-mrnaseq-se-strand-specific.cwl

Branch/Commit ID: 7fb8a1ebf8145791440bc2fed9c5f2d78a19d04c

workflow graph no-inputs-wf.cwl

Workflow without inputs.

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/no-inputs-wf.cwl

Branch/Commit ID: 5f27e234b4ca88ed1280dedf9e3391a01de12912

workflow graph mut3.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/mut3.cwl

Branch/Commit ID: 4642316a30a95d4f3d135c18f98477886b160094

workflow graph allele-alignreads-se-pe.cwl

Workflow maps FASTQ files from `fastq_files` input into reference genome `reference_star_indices_folder` and insilico generated `insilico_star_indices_folder` genome (concatenated genome for both `strain1` and `strain2` strains). For both genomes STAR is run with `outFilterMultimapNmax` parameter set to 1 to discard all of the multimapped reads. For insilico genome SAM file is generated. Then it's splitted into two SAM files based on strain names and then sorted by coordinates into the BAM format. For reference genome output BAM file from STAR slignment is also coordinate sorted.

https://github.com/datirium/workflows.git

Path: subworkflows/allele-alignreads-se-pe.cwl

Branch/Commit ID: e238d1756f1db35571e84d72e1699e5d1540f10c

workflow graph Generate ATDP heatmap using Homer

Generate ATDP heatmap centered on TSS from an array of input BAM files and genelist TSV file. Returns array of heatmap JSON files with the names that have the same basenames as input BAM files, but with .json extension

https://github.com/datirium/workflows.git

Path: workflows/heatmap.cwl

Branch/Commit ID: bfa3843bcf36125ff258d6314f64b41336f06e6b