Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph kmer_build_tree

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_build_tree.cwl

Branch/Commit ID: f5c11df465aaadf712c38ba4933679fe1cbe03ca

workflow graph Cellranger reanalyze - reruns secondary analysis performed on the feature-barcode matrix

Devel version of Single-Cell Cell Ranger Reanalyze ================================================== Workflow calls \"cellranger aggr\" command to rerun secondary analysis performed on the feature-barcode matrix (dimensionality reduction, clustering and visualization) using different parameter settings. As an input we use filtered feature-barcode matrices in HDF5 format from cellranger count or aggr experiments. Note, we don't pass aggregation_metadata from the upstream cellranger aggr step. Need to address this issue when needed.

https://github.com/datirium/workflows.git

Path: workflows/cellranger-reanalyze.cwl

Branch/Commit ID: 2c486543c335bb99b245dfe7e2f033f535efb9cf

workflow graph Preprocess fastq

Remove and trim low quality reads from fastq files. Return fasta files with reads passed and reads removed.

https://github.com/MG-RAST/pipeline.git

Path: CWL/Workflows/preprocess-fastq.workflow.cwl

Branch/Commit ID: 662d424d2e433e636f46a79025325d5daaca6271

workflow graph Bismark Methylation - pipeline for BS-Seq data analysis

Sequence reads are first cleaned from adapters and transformed into fully bisulfite-converted forward (C->T) and reverse read (G->A conversion of the forward strand) versions, before they are aligned to similarly converted versions of the genome (also C->T and G->A converted). Sequence reads that produce a unique best alignment from the four alignment processes against the bisulfite genomes (which are running in parallel) are then compared to the normal genomic sequence and the methylation state of all cytosine positions in the read is inferred. A read is considered to align uniquely if an alignment has a unique best alignment score (as reported by the AS:i field). If a read produces several alignments with the same number of mismatches or with the same alignment score (AS:i field), a read (or a read-pair) is discarded altogether. On the next step we extract the methylation call for every single C analysed. The position of every single C will be written out to a new output file, depending on its context (CpG, CHG or CHH), whereby methylated Cs will be labelled as forward reads (+), non-methylated Cs as reverse reads (-). The output of the methylation extractor is then transformed into a bedGraph and coverage file. The bedGraph counts output is then used to generate a genome-wide cytosine report which reports the number on every single CpG (optionally every single cytosine) in the genome, irrespective of whether it was covered by any reads or not. As this type of report is informative for cytosines on both strands the output may be fairly large (~46mn CpG positions or >1.2bn total cytosine positions in the human genome).

https://github.com/datirium/workflows.git

Path: workflows/bismark-methylation-se.cwl

Branch/Commit ID: 10ce6e113f749c7bd725e426445220c3bdc5ddf1

workflow graph RNA-Seq pipeline paired-end strand specific

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **paired-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the paired-end RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 4. Generate BigWig file on the base of sorted BAM file 5. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 6. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-pe-dutp.cwl

Branch/Commit ID: b957a4f681bf0ca8ebba4e0d0ec3936bf79620c5

workflow graph mutect parallel workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/mutect.cwl

Branch/Commit ID: a7838a5ca72b25db5c2af20a15f34303a839980e

workflow graph Detect Docm variants

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/docm_cle.cwl

Branch/Commit ID: 441b85003fdc10cf4cbf333d89acb4d23b0fef32

workflow graph allele-process-strain.cwl

https://github.com/datirium/workflows.git

Path: subworkflows/allele-process-strain.cwl

Branch/Commit ID: 2b8146f76595f0c4d8bf692de78b21280162b1d0

workflow graph RNA-Seq pipeline paired-end strand specific

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **paired-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the paired-end RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 4. Generate BigWig file on the base of sorted BAM file 5. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 6. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-pe-dutp.cwl

Branch/Commit ID: 581156366f91861bd4dbb5bcb59f67d468b32af3

workflow graph collapsed_fastq_to_bam.cwl

https://github.com/mskcc/Innovation-Pipeline.git

Path: workflows/marianas/collapsed_fastq_to_bam.cwl

Branch/Commit ID: 9998da2da694af2edad7c2135f6995e2282794a3