Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Unaligned BAM to BQSR and VCF

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/bam_to_bqsr_no_dup_marking.cwl

Branch/Commit ID: ae75b938e6e8ae777a55686bbacad824b3c6788c

workflow graph Trim Galore ChIP-Seq pipeline single-read

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **single-read** experiment with Trim Galore. _Trim Galore_ is a wrapper around [Cutadapt](https://github.com/marcelm/cutadapt) and [FastQC](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data. In outputs it returns coordinate sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, reads coverage in a form of BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot (on the base of BAM file). Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Based on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools rmdup` *samtools\_rmdup* to get rid of duplicated reads. If removing duplicates is not required the original input BAM and BAI files return. Otherwise step *samtools\_sort\_index\_after\_rmdup* repeat `samtools sort` and `samtools index` with BAM and BAI files. Right after that `macs2 callpeak` performs peak calling *macs2\_callpeak*. On the base of returned outputs the next step *macs2\_island\_count* calculates the number of islands and estimated fragment size. If the last one is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). If at the very beginning it was set in workflow input parameters to force run peak calling with fixed fragment size, this step is skipped and the original peak calling results are saved. In the next step workflow again calculates the number of islands and estimates fragment size (*macs2\_island\_count\_forced*) for the data obtained from *macs2\_callpeak\_forced* step. If the last one was skipped the results from *macs2\_island\_count\_forced* step are equal to the ones obtained from *macs2\_island\_count* step. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage on the base of input BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads number which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it in BED format. The last one is then being sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot on the base of BAM file.

https://github.com/datirium/workflows.git

Path: workflows/trim-chipseq-se.cwl

Branch/Commit ID: 12c29f88855329192bfff977f046990031f04931

workflow graph allele-process-reference.cwl

https://github.com/datirium/workflows.git

Path: subworkflows/allele-process-reference.cwl

Branch/Commit ID: 2b8146f76595f0c4d8bf692de78b21280162b1d0

workflow graph rnaseq-star-rsem-deseq2.cwl

https://github.com/pitagora-network/dat2-cwl.git

Path: workflow/rna-seq/rnaseq-star-rsem-deseq2/rnaseq-star-rsem-deseq2.cwl

Branch/Commit ID: 6db4456ca7314b036e59f50910654066da99772a

workflow graph allele-alignreads-se-pe.cwl

Workflow maps FASTQ files from `fastq_files` input into reference genome `reference_star_indices_folder` and insilico generated `insilico_star_indices_folder` genome (concatenated genome for both `strain1` and `strain2` strains). For both genomes STAR is run with `outFilterMultimapNmax` parameter set to 1 to discard all of the multimapped reads. For insilico genome SAM file is generated. Then it's splitted into two SAM files based on strain names and then sorted by coordinates into the BAM format. For reference genome output BAM file from STAR slignment is also coordinate sorted.

https://github.com/datirium/workflows.git

Path: subworkflows/allele-alignreads-se-pe.cwl

Branch/Commit ID: 2768d117212e50859edebea74b0641dfaf4feba4

workflow graph kmer_build_tree

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_build_tree.cwl

Branch/Commit ID: 1bf7dc7b03ea3c64e54375cc5c3767849a801000

workflow graph count-lines4-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/count-lines4-wf.cwl

Branch/Commit ID: 3e9bca4e006eae7e9febd76eb9b8292702eba2cb

workflow graph scatter-wf4.cwl#main

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/scatter-wf4.cwl

Branch/Commit ID: 596aab620489cd2611f4bc1d9a4fc914ddf34514

Packed ID: main

workflow graph Bacterial Annotation, pass 1, genemark training, by HMMs (first pass)

https://github.com/ncbi/pgap.git

Path: bacterial_annot/wf_bacterial_annot_pass1.cwl

Branch/Commit ID: 4def84df33963fc9ac9d5c5f804b911d01a0d9ad

workflow graph Subworkflow to allow calling cnvkit with cram instead of bam files

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/cram_to_cnvkit.cwl

Branch/Commit ID: ae75b938e6e8ae777a55686bbacad824b3c6788c