Explore Workflows
View already parsed workflows here or click here to add your own
| Graph | Name | Retrieved From | View |
|---|---|---|---|
|
|
HBA_target.cwl
|
Path: workflows/HBA_target.cwl Branch/Commit ID: 7b6185e2e6f9d36b1987274e82842c82ba6f8342 |
|
|
|
count-lines10-wf.cwl
|
Path: tests/count-lines10-wf.cwl Branch/Commit ID: 7d7986a6e852ca6e3239c96d3a05dd536c76c903 |
|
|
|
scatter-wf2.cwl
|
Path: tests/scatter-wf2.cwl Branch/Commit ID: 3e90671b25f7840ef2926ad2bacbf447772dda94 |
|
|
|
rnaseq-se-dutp.cwl
Runs RNA-Seq dUTP BioWardrobe basic analysis with strand specific single-end data file. |
Path: workflows/rnaseq-se-dutp.cwl Branch/Commit ID: 896422c9ff1995024cb77675edcd4d973ae11f7a |
|
|
|
bulk scRNA-seq pipeline using Salmon
|
Path: bulk-pipeline.cwl Branch/Commit ID: 8af5a1c9c99b06e7024e4ddbf45a15cf07ea9410 |
|
|
|
mut2.cwl
|
Path: tests/wf/mut2.cwl Branch/Commit ID: 6d8c2a41e2c524e8d746020cc91711ecc3418a23 |
|
|
|
ValidateTelescopeSimulationModel
Validate the telescope simulation model as a whole. |
Path: workflows/ValidateTelescopeSimulationModel.cwl Branch/Commit ID: 789752af87eb190387ff2acb4c95c7a5cdb961e7 |
|
|
|
gcaccess_from_list
|
Path: task_types/tt_gcaccess_from_list.cwl Branch/Commit ID: 4ffbad9ffeab15ec8af5f6f91bd352ef96d1ef77 |
|
|
|
step-valuefrom4-wf.cwl
|
Path: tests/step-valuefrom4-wf.cwl Branch/Commit ID: 3e90671b25f7840ef2926ad2bacbf447772dda94 |
|
|
|
PCA - Principal Component Analysis
Principal Component Analysis -------------- Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables (entities each of which takes on various numerical values) into a set of values of linearly uncorrelated variables called principal components. The calculation is done by a singular value decomposition of the (centered and possibly scaled) data matrix, not by using eigen on the covariance matrix. This is generally the preferred method for numerical accuracy. |
Path: workflows/pca.cwl Branch/Commit ID: dda6e8b5ada3f106a2b3bfcc1b151eccf9977726 |
