Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph kmer_top_n_extract

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_top_n_extract.cwl

Branch/Commit ID: 146df33e2e44afa2a608ac72c036e6b6b871af93

workflow graph CLIP-Seq pipeline for single-read experiment NNNNG

Cross-Linking ImmunoPrecipitation ================================= `CLIP` (`cross-linking immunoprecipitation`) is a method used in molecular biology that combines UV cross-linking with immunoprecipitation in order to analyse protein interactions with RNA or to precisely locate RNA modifications (e.g. m6A). (Uhl|Houwaart|Corrado|Wright|Backofen|2017)(Ule|Jensen|Ruggiu|Mele|2003)(Sugimoto|König|Hussain|Zupan|2012)(Zhang|Darnell|2011) (Ke| Alemu| Mertens| Gantman|2015) CLIP-based techniques can be used to map RNA binding protein binding sites or RNA modification sites (Ke| Alemu| Mertens| Gantman|2015)(Ke| Pandya-Jones| Saito| Fak|2017) of interest on a genome-wide scale, thereby increasing the understanding of post-transcriptional regulatory networks. The identification of sites where RNA-binding proteins (RNABPs) interact with target RNAs opens the door to understanding the vast complexity of RNA regulation. UV cross-linking and immunoprecipitation (CLIP) is a transformative technology in which RNAs purified from _in vivo_ cross-linked RNA-protein complexes are sequenced to reveal footprints of RNABP:RNA contacts. CLIP combined with high-throughput sequencing (HITS-CLIP) is a generalizable strategy to produce transcriptome-wide maps of RNA binding with higher accuracy and resolution than standard RNA immunoprecipitation (RIP) profiling or purely computational approaches. The application of CLIP to Argonaute proteins has expanded the utility of this approach to mapping binding sites for microRNAs and other small regulatory RNAs. Finally, recent advances in data analysis take advantage of cross-link–induced mutation sites (CIMS) to refine RNA-binding maps to single-nucleotide resolution. Once IP conditions are established, HITS-CLIP takes ~8 d to prepare RNA for sequencing. Established pipelines for data analysis, including those for CIMS, take 3–4 d. Workflow -------- CLIP begins with the in-vivo cross-linking of RNA-protein complexes using ultraviolet light (UV). Upon UV exposure, covalent bonds are formed between proteins and nucleic acids that are in close proximity. (Darnell|2012) The cross-linked cells are then lysed, and the protein of interest is isolated via immunoprecipitation. In order to allow for sequence specific priming of reverse transcription, RNA adapters are ligated to the 3' ends, while radiolabeled phosphates are transferred to the 5' ends of the RNA fragments. The RNA-protein complexes are then separated from free RNA using gel electrophoresis and membrane transfer. Proteinase K digestion is then performed in order to remove protein from the RNA-protein complexes. This step leaves a peptide at the cross-link site, allowing for the identification of the cross-linked nucleotide. (König| McGlincy| Ule|2012) After ligating RNA linkers to the RNA 5' ends, cDNA is synthesized via RT-PCR. High-throughput sequencing is then used to generate reads containing distinct barcodes that identify the last cDNA nucleotide. Interaction sites can be identified by mapping the reads back to the transcriptome.

https://github.com/datirium/workflows.git

Path: workflows/clipseq-se.cwl

Branch/Commit ID: 60854b5d299df91e135e05d02f4be61f6a310fbc

workflow graph SoupX (workflow) - an R package for the estimation and removal of cell free mRNA contamination

Wrapped in a workflow SoupX tool for easy access to Cell Ranger pipeline compressed outputs.

https://github.com/datirium/workflows.git

Path: tools/soupx-subworkflow.cwl

Branch/Commit ID: a1f6ca50fcb0881781b3ba0306dd61ebf555eaba

workflow graph Runs InterProScan on batches of sequences to retrieve functional annotations.

https://github.com/EBI-Metagenomics/workflow-is-cwl.git

Path: workflows/InterProScan-v5-chunked-wf.cwl

Branch/Commit ID: 72f702591368397f56d455128f60916902104dd2

workflow graph Generate genome indices for STAR & bowtie

Creates indices for: * [STAR](https://github.com/alexdobin/STAR) v2.5.3a (03/17/2017) PMID: [23104886](https://www.ncbi.nlm.nih.gov/pubmed/23104886) * [bowtie](http://bowtie-bio.sourceforge.net/tutorial.shtml) v1.2.0 (12/30/2016) It performs the following steps: 1. `STAR --runMode genomeGenerate` to generate indices, based on [FASTA](http://zhanglab.ccmb.med.umich.edu/FASTA/) and [GTF](http://mblab.wustl.edu/GTF2.html) input files, returns results as an array of files 2. Outputs indices as [Direcotry](http://www.commonwl.org/v1.0/CommandLineTool.html#Directory) data type 3. Separates *chrNameLength.txt* file from Directory output 4. `bowtie-build` to generate indices requires genome [FASTA](http://zhanglab.ccmb.med.umich.edu/FASTA/) file as input, returns results as a group of main and secondary files

https://github.com/datirium/workflows.git

Path: workflows/genome-indices.cwl

Branch/Commit ID: 44214a9d02e6d85b03eb708552ed812ae3d4a733

workflow graph downsample unaligned BAM and align

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/downsampled_alignment.cwl

Branch/Commit ID: ae75b938e6e8ae777a55686bbacad824b3c6788c

workflow graph oxog_sub_wf.cwl

This is a subworkflow of the main oxog_varbam_annotat_wf workflow - this is not meant to be run as a stand-alone workflow!

https://github.com/david4096/oxog-dockstore-tools.git

Path: oxog_sub_wf.cwl

Branch/Commit ID: 6366ed398da10019b6d81a789291af6d909f28f4

workflow graph taxonomy_check_16S

https://github.com/ncbi/pgap.git

Path: task_types/tt_taxonomy_check_16S.cwl

Branch/Commit ID: f5d70f3ad365a2c017fab1c9654c88bc1caf41aa

workflow graph gathered exome alignment and somatic variant detection

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/somatic_exome_gathered.cwl

Branch/Commit ID: 061d3a2fbcd8a1c39c0b38c549e528deb24a9d54

workflow graph RNA-Seq pipeline paired-end strand specific

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **paired-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the paired-end RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 4. Generate BigWig file on the base of sorted BAM file 5. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 6. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-pe-dutp.cwl

Branch/Commit ID: d1bef74924efcb8bfaa00987b3f148d5a192b7a9