Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph cache_asnb_entries

https://github.com/ncbi/pgap.git

Path: task_types/tt_cache_asnb_entries.cwl

Branch/Commit ID: 4def84df33963fc9ac9d5c5f804b911d01a0d9ad

workflow graph umi molecular alignment workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/molecular_alignment.cwl

Branch/Commit ID: f77a920bcc73f6cfdb091eed75a149d02cd8a263

workflow graph Chipseq alignment for nonhuman with qc and creating homer tag directory

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/chipseq_alignment_nonhuman.cwl

Branch/Commit ID: 2decd55996b912feb48be5db1b052aa3274ee405

workflow graph genomics-workspace.cwl

https://github.com/nal-i5k/organism_onboarding.git

Path: flow_genomicsWorkspace/genomics-workspace.cwl

Branch/Commit ID: 87b773804343bf12606f4ee596d7635e9ad20c7a

workflow graph gathered exome alignment and somatic variant detection for cle purpose

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/somatic_exome_cle_gathered.cwl

Branch/Commit ID: 2e0562a5c3cd7aac24af4c622a5ae68a7fb23a71

workflow graph Feature expression merge - combines feature expression from several experiments

Feature expression merge - combines feature expression from several experiments ========================================================================= Workflows merges RPKM (by default) gene expression from several experiments based on the values from GeneId, Chrom, TxStart, TxEnd and Strand columns (by default). Reported unique columns are renamed based on the experiments names.

https://github.com/datirium/workflows.git

Path: workflows/feature-merge.cwl

Branch/Commit ID: 2005c6b7f1bff6247d015ff6c116bd9ec97158bb

workflow graph cache_asnb_entries

https://github.com/ncbi/pgap.git

Path: task_types/tt_cache_asnb_entries.cwl

Branch/Commit ID: 146df33e2e44afa2a608ac72c036e6b6b871af93

workflow graph ChIP-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **paired-end** experiment. A [FASTQ](http://maq.sourceforge.net/fastq.shtml) input file has to be provided. The pipeline produces a sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, coverage by estimated fragments as a BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot. Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is an unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Depending on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools rmdup` *samtools\_rmdup* to get rid of duplicated reads. If removing duplicates is not required the original BAM and BAI files are returned. Otherwise step *samtools\_sort\_index\_after\_rmdup* repeat `samtools sort` and `samtools index` with BAM and BAI files without duplicates. Next `macs2 callpeak` performs peak calling *macs2\_callpeak* and the next step reports *macs2\_island\_count* the number of islands and estimated fragment size. If the latter is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). It is also possible to force MACS2 to use pre set fragment size in the first place. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage from BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it as a BEDgraph file whichis then sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns nearest genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot from the BAM file.

https://github.com/datirium/workflows.git

Path: workflows/chipseq-pe.cwl

Branch/Commit ID: a1f6ca50fcb0881781b3ba0306dd61ebf555eaba

workflow graph allele-vcf-rnaseq-pe.cwl

Allele specific RNA-Seq (using vcf) paired-end workflow

https://github.com/datirium/workflows.git

Path: workflows/allele-vcf-rnaseq-pe.cwl

Branch/Commit ID: 94471ee6c01b7bc17102e45e56e7366c2a52acdf

workflow graph CLIP-Seq pipeline for single-read experiment NNNNG

Cross-Linking ImmunoPrecipitation ================================= `CLIP` (`cross-linking immunoprecipitation`) is a method used in molecular biology that combines UV cross-linking with immunoprecipitation in order to analyse protein interactions with RNA or to precisely locate RNA modifications (e.g. m6A). (Uhl|Houwaart|Corrado|Wright|Backofen|2017)(Ule|Jensen|Ruggiu|Mele|2003)(Sugimoto|König|Hussain|Zupan|2012)(Zhang|Darnell|2011) (Ke| Alemu| Mertens| Gantman|2015) CLIP-based techniques can be used to map RNA binding protein binding sites or RNA modification sites (Ke| Alemu| Mertens| Gantman|2015)(Ke| Pandya-Jones| Saito| Fak|2017) of interest on a genome-wide scale, thereby increasing the understanding of post-transcriptional regulatory networks. The identification of sites where RNA-binding proteins (RNABPs) interact with target RNAs opens the door to understanding the vast complexity of RNA regulation. UV cross-linking and immunoprecipitation (CLIP) is a transformative technology in which RNAs purified from _in vivo_ cross-linked RNA-protein complexes are sequenced to reveal footprints of RNABP:RNA contacts. CLIP combined with high-throughput sequencing (HITS-CLIP) is a generalizable strategy to produce transcriptome-wide maps of RNA binding with higher accuracy and resolution than standard RNA immunoprecipitation (RIP) profiling or purely computational approaches. The application of CLIP to Argonaute proteins has expanded the utility of this approach to mapping binding sites for microRNAs and other small regulatory RNAs. Finally, recent advances in data analysis take advantage of cross-link–induced mutation sites (CIMS) to refine RNA-binding maps to single-nucleotide resolution. Once IP conditions are established, HITS-CLIP takes ~8 d to prepare RNA for sequencing. Established pipelines for data analysis, including those for CIMS, take 3–4 d. Workflow -------- CLIP begins with the in-vivo cross-linking of RNA-protein complexes using ultraviolet light (UV). Upon UV exposure, covalent bonds are formed between proteins and nucleic acids that are in close proximity. (Darnell|2012) The cross-linked cells are then lysed, and the protein of interest is isolated via immunoprecipitation. In order to allow for sequence specific priming of reverse transcription, RNA adapters are ligated to the 3' ends, while radiolabeled phosphates are transferred to the 5' ends of the RNA fragments. The RNA-protein complexes are then separated from free RNA using gel electrophoresis and membrane transfer. Proteinase K digestion is then performed in order to remove protein from the RNA-protein complexes. This step leaves a peptide at the cross-link site, allowing for the identification of the cross-linked nucleotide. (König| McGlincy| Ule|2012) After ligating RNA linkers to the RNA 5' ends, cDNA is synthesized via RT-PCR. High-throughput sequencing is then used to generate reads containing distinct barcodes that identify the last cDNA nucleotide. Interaction sites can be identified by mapping the reads back to the transcriptome.

https://github.com/datirium/workflows.git

Path: workflows/clipseq-se.cwl

Branch/Commit ID: 5e7385b8cfa4ddae822fff37b6bd22eb0370b389