Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Running cellranger count and lineage inference

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/single_cell_rnaseq.cwl

Branch/Commit ID: ffd73951157c61c1581d346628d75b61cdd04141

workflow graph Cell Ranger ARC Count Gene Expression + ATAC

Cell Ranger ARC Count Gene Expression + ATAC ============================================

https://github.com/datirium/workflows.git

Path: workflows/cellranger-arc-count.cwl

Branch/Commit ID: 1131f82a53315cca217a6c84b3bd272aa62e4bca

workflow graph kmer_cache_retrieve

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_cache_retrieve.cwl

Branch/Commit ID: da35c7b700912dd3643e3dd2c5c96b7be3a4edad

workflow graph WGS and MT analysis for fastq files

rna / protein - qc, preprocess, filter, annotation, index, abundance

https://github.com/MG-RAST/pipeline.git

Path: CWL/Workflows/wgs-noscreen-fastq.workflow.cwl

Branch/Commit ID: 963ca6a73a9f8879d57c08fa59548f98f28e755a

workflow graph umi per-lane alignment subworkflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/umi_alignment.cwl

Branch/Commit ID: f77a920bcc73f6cfdb091eed75a149d02cd8a263

workflow graph kmer_build_tree

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_build_tree.cwl

Branch/Commit ID: 7319ccfd2108929588bdc266d9df198629dfaa65

workflow graph FastQC - a quality control tool for high throughput sequence data

FastQC - a quality control tool for high throughput sequence data ===================================== FastQC aims to provide a simple way to do some quality control checks on raw sequence data coming from high throughput sequencing pipelines. It provides a modular set of analyses which you can use to give a quick impression of whether your data has any problems of which you should be aware before doing any further analysis. The main functions of FastQC are: - Import of data from FastQ files (any variant) - Providing a quick overview to tell you in which areas there may be problems - Summary graphs and tables to quickly assess your data - Export of results to an HTML based permanent report - Offline operation to allow automated generation of reports without running the interactive application

https://github.com/datirium/workflows.git

Path: workflows/fastqc.cwl

Branch/Commit ID: a839eb6390974089e1a558c49fc07b4c66c50767

workflow graph sum-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/sum-wf.cwl

Branch/Commit ID: 596aab620489cd2611f4bc1d9a4fc914ddf34514

workflow graph kmer_seq_entry_extract_wnode

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_seq_entry_extract_wnode.cwl

Branch/Commit ID: f5c11df465aaadf712c38ba4933679fe1cbe03ca

workflow graph MAnorm PE - quantitative comparison of ChIP-Seq paired-end data

What is MAnorm? -------------- MAnorm is a robust model for quantitative comparison of ChIP-Seq data sets of TFs (transcription factors) or epigenetic modifications and you can use it for: * Normalization of two ChIP-seq samples * Quantitative comparison (differential analysis) of two ChIP-seq samples * Evaluating the overlap enrichment of the protein binding sites(peaks) * Elucidating underlying mechanisms of cell-type specific gene regulation How MAnorm works? ---------------- MAnorm uses common peaks of two samples as a reference to build the rescaling model for normalization, which is based on the empirical assumption that if a chromatin-associated protein has a substantial number of peaks shared in two conditions, the binding at these common regions will tend to be determined by similar mechanisms, and thus should exhibit similar global binding intensities across samples. The observed differences on common peaks are presumed to reflect the scaling relationship of ChIP-Seq signals between two samples, which can be applied to all peaks. What do the inputs mean? ---------------- ### General **Experiment short name/Alias** * short name for you experiment to identify among the others **ChIP-Seq PE sample 1** * previously analyzed ChIP-Seq paired-end experiment to be used as Sample 1 **ChIP-Seq PE sample 2** * previously analyzed ChIP-Seq paired-end experiment to be used as Sample 2 **Genome** * Reference genome to be used for gene assigning ### Advanced **Reads shift size for sample 1** * This value is used to shift reads towards 3' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **Reads shift size for sample 2** * This value is used to shift reads towards 5' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **M-value (log2-ratio) cutoff** * Absolute M-value (log2-ratio) cutoff to define biased (differential binding) peaks. Default: 1.0 **P-value cutoff** * P-value cutoff to define biased peaks. Default: 0.01 **Window size** * Window size to count reads and calculate read densities. 2000 is recommended for sharp histone marks like H3K4me3 and H3K27ac, and 1000 for TFs or DNase-seq. Default: 2000

https://github.com/datirium/workflows.git

Path: workflows/manorm-pe.cwl

Branch/Commit ID: ee66d03be8a7fd61367db40c37a973ff55ece4da