Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph 1st-workflow.cwl

https://github.com/golharam/cwl-graph-generate.git

Path: test/1st-workflow.cwl

Branch/Commit ID: master

workflow graph gk-run-siesta-snapshot.cwl

https://github.com/vdikan/cwl-gk-thermal.git

Path: cwl/gk-run-siesta-snapshot.cwl

Branch/Commit ID: master

workflow graph trim-rnaseq-se.cwl

Runs RNA-Seq BioWardrobe basic analysis with single-end data file.

https://github.com/Barski-lab/workflows.git

Path: workflows/trim-rnaseq-se.cwl

Branch/Commit ID: master

workflow graph revsort.cwl

Reverse the lines in a document, then sort those lines.

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/revsort.cwl

Branch/Commit ID: main

workflow graph kallisto-pe.cwl

https://github.com/yyoshiaki/cwl_user_guide.git

Path: kallisto/kallisto-pe.cwl

Branch/Commit ID: master

workflow graph rnaseq-se-dutp.cwl

Runs RNA-Seq dUTP BioWardrobe basic analysis with strand specific single-end data file.

https://github.com/Barski-lab/workflows.git

Path: workflows/rnaseq-se-dutp.cwl

Branch/Commit ID: master

workflow graph ValidateOpticalPSF

Validate telescope (whole dish) optical point-spread function

https://github.com/gammasim/workflows.git

Path: workflows/ValidateOpticalPSF.cwl

Branch/Commit ID: main

workflow graph Cell Ranger Count (RNA+VDJ)

Cell Ranger Count (RNA+VDJ) Quantifies single-cell gene expression, performs V(D)J contigs assembly and clonotype calling of the sequencing data from a single 10x Genomics library in a combined manner. The results of this workflow are primarily used in either “Single-Cell RNA-Seq Filtering Analysis”, “Single-Cell Immune Profiling Analysis”, or “Cell Ranger Aggregate (RNA, RNA+VDJ)” pipelines.

https://github.com/datirium/workflows.git

Path: workflows/cellranger-multi.cwl

Branch/Commit ID: 93b844a80f4008cc973ea9b5efedaff32a343895

workflow graph env-wf3.cwl

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/env-wf3.cwl

Branch/Commit ID: main

workflow graph EMG pipeline's QIIME workflow

Step 1: Set environment PYTHONPATH, QIIME_ROOT, PATH Step 2: Run QIIME script pick_closed_reference_otus.py ${python} ${qiimeDir}/bin/pick_closed_reference_otus.py -i $1 -o $2 -r ${qiimeDir}/gg_13_8_otus/rep_set/97_otus.fasta -t ${qiimeDir}/gg_13_8_otus/taxonomy/97_otu_taxonomy.txt -p ${qiimeDir}/cr_otus_parameters.txt Step 3: Convert new biom format to old biom format (json) ${qiimeDir}/bin/biom convert -i ${resultDir}/cr_otus/otu_table.biom -o ${resultDir}/cr_otus/${infileBase}_otu_table_json.biom --table-type=\"OTU table\" --to-json Step 4: Convert new biom format to a classic OTU table. ${qiimeDir}/bin/biom convert -i ${resultDir}/cr_otus/otu_table.biom -o ${resultDir}/cr_otus/${infileBase}_otu_table.txt --to-tsv --header-key taxonomy --table-type \"OTU table\" Step 5: Create otu summary ${qiimeDir}/bin/biom summarize-table -i ${resultDir}/cr_otus/otu_table.biom -o ${resultDir}/cr_otus/${infileBase}_otu_table_summary.txt Step 6: Move one of the result files mv ${resultDir}/cr_otus/otu_table.biom ${resultDir}/cr_otus/${infileBase}_otu_table_hdf5.biom Step 7: Create a list of observations awk '{print $1}' ${resultDir}/cr_otus/${infileBase}_otu_table.txt | sed '/#/d' > ${resultDir}/cr_otus/${infileBase}_otu_observations.txt Step 8: Create a phylogenetic tree by pruning GreenGenes and keeping observed otus ${python} ${qiimeDir}/bin/filter_tree.py -i ${qiimeDir}/gg_13_8_otus/trees/97_otus.tree -t ${resultDir}/cr_otus/${infileBase}_otu_observations.txt -o ${resultDir}/cr_otus/${infileBase}_pruned.tree

https://github.com/ProteinsWebTeam/ebi-metagenomics-cwl.git

Path: workflows/qiime-workflow.cwl

Branch/Commit ID: 0fed1c9