Explore Workflows
View already parsed workflows here or click here to add your own
Graph | Name | Retrieved From | View |
---|---|---|---|
1st-workflow.cwl
|
https://github.com/golharam/cwl-graph-generate.git
Path: test/1st-workflow.cwl Branch/Commit ID: master |
||
gk-run-siesta-snapshot.cwl
|
https://github.com/vdikan/cwl-gk-thermal.git
Path: cwl/gk-run-siesta-snapshot.cwl Branch/Commit ID: master |
||
trim-rnaseq-se.cwl
Runs RNA-Seq BioWardrobe basic analysis with single-end data file. |
https://github.com/Barski-lab/workflows.git
Path: workflows/trim-rnaseq-se.cwl Branch/Commit ID: master |
||
revsort.cwl
Reverse the lines in a document, then sort those lines. |
https://github.com/common-workflow-language/cwl-v1.1.git
Path: tests/revsort.cwl Branch/Commit ID: main |
||
kallisto-pe.cwl
|
https://github.com/yyoshiaki/cwl_user_guide.git
Path: kallisto/kallisto-pe.cwl Branch/Commit ID: master |
||
rnaseq-se-dutp.cwl
Runs RNA-Seq dUTP BioWardrobe basic analysis with strand specific single-end data file. |
https://github.com/Barski-lab/workflows.git
Path: workflows/rnaseq-se-dutp.cwl Branch/Commit ID: master |
||
ValidateOpticalPSF
Validate telescope (whole dish) optical point-spread function |
https://github.com/gammasim/workflows.git
Path: workflows/ValidateOpticalPSF.cwl Branch/Commit ID: main |
||
Cell Ranger Count (RNA+VDJ)
Cell Ranger Count (RNA+VDJ) Quantifies single-cell gene expression, performs V(D)J contigs assembly and clonotype calling of the sequencing data from a single 10x Genomics library in a combined manner. The results of this workflow are primarily used in either “Single-Cell RNA-Seq Filtering Analysis”, “Single-Cell Immune Profiling Analysis”, or “Cell Ranger Aggregate (RNA, RNA+VDJ)” pipelines. |
https://github.com/datirium/workflows.git
Path: workflows/cellranger-multi.cwl Branch/Commit ID: 93b844a80f4008cc973ea9b5efedaff32a343895 |
||
env-wf3.cwl
|
https://github.com/common-workflow-language/cwl-v1.1.git
Path: tests/env-wf3.cwl Branch/Commit ID: main |
||
EMG pipeline's QIIME workflow
Step 1: Set environment PYTHONPATH, QIIME_ROOT, PATH Step 2: Run QIIME script pick_closed_reference_otus.py ${python} ${qiimeDir}/bin/pick_closed_reference_otus.py -i $1 -o $2 -r ${qiimeDir}/gg_13_8_otus/rep_set/97_otus.fasta -t ${qiimeDir}/gg_13_8_otus/taxonomy/97_otu_taxonomy.txt -p ${qiimeDir}/cr_otus_parameters.txt Step 3: Convert new biom format to old biom format (json) ${qiimeDir}/bin/biom convert -i ${resultDir}/cr_otus/otu_table.biom -o ${resultDir}/cr_otus/${infileBase}_otu_table_json.biom --table-type=\"OTU table\" --to-json Step 4: Convert new biom format to a classic OTU table. ${qiimeDir}/bin/biom convert -i ${resultDir}/cr_otus/otu_table.biom -o ${resultDir}/cr_otus/${infileBase}_otu_table.txt --to-tsv --header-key taxonomy --table-type \"OTU table\" Step 5: Create otu summary ${qiimeDir}/bin/biom summarize-table -i ${resultDir}/cr_otus/otu_table.biom -o ${resultDir}/cr_otus/${infileBase}_otu_table_summary.txt Step 6: Move one of the result files mv ${resultDir}/cr_otus/otu_table.biom ${resultDir}/cr_otus/${infileBase}_otu_table_hdf5.biom Step 7: Create a list of observations awk '{print $1}' ${resultDir}/cr_otus/${infileBase}_otu_table.txt | sed '/#/d' > ${resultDir}/cr_otus/${infileBase}_otu_observations.txt Step 8: Create a phylogenetic tree by pruning GreenGenes and keeping observed otus ${python} ${qiimeDir}/bin/filter_tree.py -i ${qiimeDir}/gg_13_8_otus/trees/97_otus.tree -t ${resultDir}/cr_otus/${infileBase}_otu_observations.txt -o ${resultDir}/cr_otus/${infileBase}_pruned.tree |
https://github.com/ProteinsWebTeam/ebi-metagenomics-cwl.git
Path: workflows/qiime-workflow.cwl Branch/Commit ID: 0fed1c9 |