Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Run genomic CMsearch

https://github.com/ncbi/pgap.git

Path: bacterial_noncoding/wf_gcmsearch.cwl

Branch/Commit ID: 4ffbad9ffeab15ec8af5f6f91bd352ef96d1ef77

workflow graph io-int-optional-wf.cwl

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/io-int-optional-wf.cwl

Branch/Commit ID: 3e90671b25f7840ef2926ad2bacbf447772dda94

workflow graph echo-wf-default.cwl

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/echo-wf-default.cwl

Branch/Commit ID: 3e90671b25f7840ef2926ad2bacbf447772dda94

workflow graph Kallisto index pipeline

This workflow indexes the input reference FASTA with kallisto, and generates a kallisto index file (.kdx). This index sample can then be used as input into the kallisto transcript-level quantification workflow (kallisto-quant-pe.cwl), or others that may include this workflow as an upstream source. ### __Inputs__ - FASTA file of the reference genome that will be indexed - number of threads to use for multithreading processes ### __Outputs__ - kallisto index file (.kdx). - stdout log file (output in Overview tab as well) - stderr log file ### __Data Analysis Steps__ 1. cwl calls dockercontainer robertplayer/scidap-kallisto to index reference FASTA with `kallisto index`, generating a kallisto index file. ### __References__ - Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification, Nature Biotechnology 34, 525-527(2016), doi:10.1038/nbt.3519

https://github.com/datirium/workflows.git

Path: workflows/kallisto-index.cwl

Branch/Commit ID: d76110e0bfc40c874f82e37cef6451d74df4f908

workflow graph extract_gencoll_ids

https://github.com/ncbi/pgap.git

Path: task_types/tt_extract_gencoll_ids.cwl

Branch/Commit ID: 5b498b4c4f17bb8f17e6886aa4c5661d7aba34fc

workflow graph conflict-wf.cwl#collision

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/conflict-wf.cwl

Branch/Commit ID: 7d7986a6e852ca6e3239c96d3a05dd536c76c903

Packed ID: collision

workflow graph variant-calling-pair.cwl

https://github.com/mskcc/argos-cwl.git

Path: modules/pair/variant-calling-pair.cwl

Branch/Commit ID: 7c694b51d9d593439cf8ab3e5006665f0bbe2149

workflow graph tt_kmer_top_n.cwl

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_top_n.cwl

Branch/Commit ID: 1cfd46014be8d867044cb10d1ddde0cb3068ee84

workflow graph wf-loadContents4.cwl

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/wf-loadContents4.cwl

Branch/Commit ID: 3e90671b25f7840ef2926ad2bacbf447772dda94

workflow graph Trim Galore RNA-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **pair-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ files 2. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-pe.cwl

Branch/Commit ID: 8a92669a566589d80fde9d151054ffc220ed4ddd