Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph record-in-secondaryFiles-wf.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/record-in-secondaryFiles-wf.cwl

Branch/Commit ID: ea9f8634e41824ac3f81c3dde698d5f0eef54f1b

workflow graph QuantSeq 3' FWD, FWD-UMI or REV for single-read mRNA-Seq data

### QuantSeq 3' FWD, FWD-UMI or REV for single-read mRNA-Seq data

https://github.com/datirium/workflows.git

Path: workflows/trim-quantseq-mrnaseq-se-strand-specific.cwl

Branch/Commit ID: 261c0232a7a40880f2480b811ed2d7e89c463869

workflow graph Trim Galore ChIP-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **paired-end** experiment with Trim Galore. _Trim Galore_ is a wrapper around [Cutadapt](https://github.com/marcelm/cutadapt) and [FastQC](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data. A [FASTQ](http://maq.sourceforge.net/fastq.shtml) input file has to be provided. In outputs it returns coordinate sorted BAM file alongside with index BAI file, quality statistics for both the input FASTQ files, reads coverage in a form of BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot (on the base of BAM file). Workflow starts with running fastx_quality_stats (steps fastx_quality_stats_upstream and fastx_quality_stats_downstream) from FASTX-Toolkit to calculate quality statistics for both upstream and downstream input FASTQ files. At the same time Bowtie is used to align reads from input FASTQ files to reference genome (Step bowtie_aligner). The output of this step is unsorted SAM file which is being sorted and indexed by samtools sort and samtools index (Step samtools_sort_index). Depending on workflow’s input parameters indexed and sorted BAM file could be processed by samtools rmdup (Step samtools_rmdup) to remove all possible read duplicates. In a case when removing duplicates is not necessary the step returns original input BAM and BAI files without any processing. If the duplicates were removed the following step (Step samtools_sort_index_after_rmdup) reruns samtools sort and samtools index with BAM and BAI files, if not - the step returns original unchanged input files. Right after that macs2 callpeak performs peak calling (Step macs2_callpeak). On the base of returned outputs the next step (Step macs2_island_count) calculates the number of islands and estimated fragment size. If the last one is less that 80 (hardcoded in a workflow) macs2 callpeak is rerun again with forced fixed fragment size value (Step macs2_callpeak_forced). If at the very beginning it was set in workflow input parameters to force run peak calling with fixed fragment size, this step is skipped and the original peak calling results are saved. In the next step workflow again calculates the number of islands and estimated fragment size (Step macs2_island_count_forced) for the data obtained from macs2_callpeak_forced step. If the last one was skipped the results from macs2_island_count_forced step are equal to the ones obtained from macs2_island_count step. Next step (Step macs2_stat) is used to define which of the islands and estimated fragment size should be used in workflow output: either from macs2_island_count step or from macs2_island_count_forced step. If input trigger of this step is set to True it means that macs2_callpeak_forced step was run and it returned different from macs2_callpeak step results, so macs2_stat step should return [fragments_new, fragments_old, islands_new], if trigger is False the step returns [fragments_old, fragments_old, islands_old], where sufix \"old\" defines results obtained from macs2_island_count step and sufix \"new\" - from macs2_island_count_forced step. The following two steps (Step bamtools_stats and bam_to_bigwig) are used to calculate coverage on the base of input BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads number which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it in BED format. The last one is then being sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. Step get_stat is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step island_intersect assigns genes and regions to the islands obtained from macs2_callpeak_forced. Step average_tag_density is used to calculate data for average tag density plot on the base of BAM file.

https://github.com/datirium/workflows.git

Path: workflows/trim-chipseq-pe.cwl

Branch/Commit ID: 2b8146f76595f0c4d8bf692de78b21280162b1d0

workflow graph chipseq-header.cwl

https://github.com/datirium/workflows.git

Path: metadata/chipseq-header.cwl

Branch/Commit ID: 261c0232a7a40880f2480b811ed2d7e89c463869

workflow graph workflow.cwl

https://github.com/Marco-Salvi/cwl-test.git

Path: wf5301/workflow.cwl

Branch/Commit ID: 0e6cfe0646173e228b2fce63e23ed8f9d78598b0

workflow graph count-lines11-wf-noET.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/count-lines11-wf-noET.cwl

Branch/Commit ID: 31ec48a8d81ef7c1b2c5e9c0a19e7623efe4a1e2

workflow graph bam-bedgraph-bigwig.cwl

Workflow converts input BAM file into bigWig and bedGraph files. Input BAM file should be sorted by coordinates (required by `bam_to_bedgraph` step). If `split` input is not provided use true by default. Default logic is implemented in `valueFrom` field of `split` input inside `bam_to_bedgraph` step to avoid possible bug in cwltool with setting default values for workflow inputs. `scale` has higher priority over the `mapped_reads_number`. The last one is used to calculate `-scale` parameter for `bedtools genomecov` (step `bam_to_bedgraph`) only in a case when input `scale` is not provided. All logic is implemented inside `bedtools-genomecov.cwl`. `bigwig_filename` defines the output name only for generated bigWig file. `bedgraph_filename` defines the output name for generated bedGraph file and can influence on generated bigWig filename in case when `bigwig_filename` is not provided. All workflow inputs and outputs don't have `format` field to avoid format incompatibility errors when workflow is used as subworkflow.

https://github.com/Barski-lab/workflows.git

Path: tools/bam-bedgraph-bigwig.cwl

Branch/Commit ID: 8f5444418aad3424ccb05a3e618bd773f99f8e6e

workflow graph wf-loadContents4.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/wf-loadContents4.cwl

Branch/Commit ID: 31ec48a8d81ef7c1b2c5e9c0a19e7623efe4a1e2

workflow graph Subsample BAM file creating a tagAlign and pseudoreplicates

This workflow creates a subsample from a BAM file creating a tagAlign and pseudoreplicates

https://github.com/ncbi/cwl-ngs-workflows-cbb.git

Path: workflows/File-formats/subample-pseudoreplicates.cwl

Branch/Commit ID: 33123d6a92bf0038951820d0d2c9cf501ae2ebf6

workflow graph workflow_input_sf_expr_v1_2.cwl

https://github.com/common-workflow-language/cwl-utils.git

Path: testdata/workflow_input_sf_expr_v1_2.cwl

Branch/Commit ID: 77669d4dd1d1ebd2bdd9810f911608146d9b8e51