Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Filter single sample sv vcf from paired read callers(Manta/Smoove)

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/sv_paired_read_caller_filter.cwl

Branch/Commit ID: d57c2af01a3cb6016e5a264f60641eafd2e5aa05

workflow graph Filter single sample sv vcf from depth callers(cnvkit/cnvnator)

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/sv_depth_caller_filter.cwl

Branch/Commit ID: d57c2af01a3cb6016e5a264f60641eafd2e5aa05

workflow graph fp_filter workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/fp_filter.cwl

Branch/Commit ID: 293dc7b83639d21a56efff2baf9dfe4e97b9b806

workflow graph Run genomic CMsearch

https://github.com/ncbi/pgap.git

Path: bacterial_noncoding/wf_gcmsearch.cwl

Branch/Commit ID: 91181df8d9ef8eed9d8f40db707b9a4376fecaf5

workflow graph allele-process-strain.cwl

https://github.com/datirium/workflows.git

Path: subworkflows/allele-process-strain.cwl

Branch/Commit ID: 3b2e0de49d9ee6fd9a8c9580b6a02d0f7e4c8f7c

workflow graph RNA-Seq alignment and transcript/gene abundance workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/rnaseq.cwl

Branch/Commit ID: 3034168d652bfa930ba09af20e473a4564a8010d

workflow graph tt_univec_wnode.cwl

https://github.com/ncbi/pgap.git

Path: task_types/tt_univec_wnode.cwl

Branch/Commit ID: 7b5130d2408bce82ee15c666b37d931ef6f452e3

workflow graph Merge, annotate, and generate a TSV for SVs

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/merge_svs.cwl

Branch/Commit ID: d57c2af01a3cb6016e5a264f60641eafd2e5aa05

workflow graph Trim Galore RNA-Seq pipeline single-read

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **single-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ file 2. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-se.cwl

Branch/Commit ID: e238d1756f1db35571e84d72e1699e5d1540f10c

workflow graph allele-alignreads-se-pe.cwl

Workflow maps FASTQ files from `fastq_files` input into reference genome `reference_star_indices_folder` and insilico generated `insilico_star_indices_folder` genome (concatenated genome for both `strain1` and `strain2` strains). For both genomes STAR is run with `outFilterMultimapNmax` parameter set to 1 to discard all of the multimapped reads. For insilico genome SAM file is generated. Then it's splitted into two SAM files based on strain names and then sorted by coordinates into the BAM format. For reference genome output BAM file from STAR slignment is also coordinate sorted.

https://github.com/datirium/workflows.git

Path: subworkflows/allele-alignreads-se-pe.cwl

Branch/Commit ID: 3b2e0de49d9ee6fd9a8c9580b6a02d0f7e4c8f7c