Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Filter Protein Alignments I

https://github.com/ncbi/pgap.git

Path: protein_alignment/wf_align_filter.cwl

Branch/Commit ID: 803f6367d1b279a7b6dc1a4e8ae43f1bbec9f760

workflow graph umi duplex alignment workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/duplex_alignment.cwl

Branch/Commit ID: dc2c019c1aa24cc01b451a0f048cf94a35f163c4

workflow graph Exome QC workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/qc_exome_no_verify_bam.cwl

Branch/Commit ID: 1560e7817fdb71d58aca7f98aba68809d840ade1

workflow graph Unaligned bam to sorted, markduped bam

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/align_sort_markdup.cwl

Branch/Commit ID: 1560e7817fdb71d58aca7f98aba68809d840ade1

workflow graph bam-bedgraph-bigwig.cwl

Workflow converts input BAM file into bigWig and bedGraph files. Input BAM file should be sorted by coordinates (required by `bam_to_bedgraph` step). If `split` input is not provided use true by default. Default logic is implemented in `valueFrom` field of `split` input inside `bam_to_bedgraph` step to avoid possible bug in cwltool with setting default values for workflow inputs. `scale` has higher priority over the `mapped_reads_number`. The last one is used to calculate `-scale` parameter for `bedtools genomecov` (step `bam_to_bedgraph`) only in a case when input `scale` is not provided. All logic is implemented inside `bedtools-genomecov.cwl`. `bigwig_filename` defines the output name only for generated bigWig file. `bedgraph_filename` defines the output name for generated bedGraph file and can influence on generated bigWig filename in case when `bigwig_filename` is not provided. All workflow inputs and outputs don't have `format` field to avoid format incompatibility errors when workflow is used as subworkflow.

https://github.com/datirium/workflows.git

Path: tools/bam-bedgraph-bigwig.cwl

Branch/Commit ID: aebf2355539fdf81fd9082616f8b21440d2691c6

workflow graph 03-map-se.cwl

ChIP-seq 03 mapping - reads: SE

https://github.com/Duke-GCB/GGR-cwl.git

Path: v1.0/ChIP-seq_pipeline/03-map-se.cwl

Branch/Commit ID: a502ff01b0857f8067aa541effc46a4c8b10d90f

workflow graph RNA-seq (VCF) alelle specific pipeline for paired-end data

Allele specific RNA-Seq (using vcf) paired-end workflow

https://github.com/datirium/workflows.git

Path: workflows/allele-vcf-rnaseq-pe.cwl

Branch/Commit ID: 2b8146f76595f0c4d8bf692de78b21280162b1d0

workflow graph count-lines18-wf.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/count-lines18-wf.cwl

Branch/Commit ID: a5073143db4155e05df8d2e7eb59d9e62acd65a5

workflow graph ChIP-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **paired-end** experiment. A [FASTQ](http://maq.sourceforge.net/fastq.shtml) input file has to be provided. The pipeline produces a sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, coverage by estimated fragments as a BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot. Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is an unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Depending on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools rmdup` *samtools\_rmdup* to get rid of duplicated reads. If removing duplicates is not required the original BAM and BAI files are returned. Otherwise step *samtools\_sort\_index\_after\_rmdup* repeat `samtools sort` and `samtools index` with BAM and BAI files without duplicates. Next `macs2 callpeak` performs peak calling *macs2\_callpeak* and the next step reports *macs2\_island\_count* the number of islands and estimated fragment size. If the latter is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). It is also possible to force MACS2 to use pre set fragment size in the first place. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage from BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it as a BEDgraph file whichis then sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns nearest genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot from the BAM file.

https://github.com/datirium/workflows.git

Path: workflows/chipseq-pe.cwl

Branch/Commit ID: e238d1756f1db35571e84d72e1699e5d1540f10c

workflow graph contig LCA

create LCA consistant across input contigs contigs order of precedence - rRNA, single copy gene, LCA of genes

https://github.com/MG-RAST/pipeline.git

Path: CWL/Workflows/contig-lca.workflow.cwl

Branch/Commit ID: 3e967f035c10a176b9457331df0b3374a8562b26