Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph ChIP-Seq pipeline single-read

ChIP-Seq basic analysis workflow for a single-read experiment.

https://github.com/datirium/workflows.git

Path: workflows/chipseq-se.cwl

Branch/Commit ID: 62323c137c0ce9b3f843df0dfbda28dafa7c90cf

workflow graph CLIP-Seq pipeline for single-read experiment NNNNG

Cross-Linking ImmunoPrecipitation ================================= `CLIP` (`cross-linking immunoprecipitation`) is a method used in molecular biology that combines UV cross-linking with immunoprecipitation in order to analyse protein interactions with RNA or to precisely locate RNA modifications (e.g. m6A). (Uhl|Houwaart|Corrado|Wright|Backofen|2017)(Ule|Jensen|Ruggiu|Mele|2003)(Sugimoto|König|Hussain|Zupan|2012)(Zhang|Darnell|2011) (Ke| Alemu| Mertens| Gantman|2015) CLIP-based techniques can be used to map RNA binding protein binding sites or RNA modification sites (Ke| Alemu| Mertens| Gantman|2015)(Ke| Pandya-Jones| Saito| Fak|2017) of interest on a genome-wide scale, thereby increasing the understanding of post-transcriptional regulatory networks. The identification of sites where RNA-binding proteins (RNABPs) interact with target RNAs opens the door to understanding the vast complexity of RNA regulation. UV cross-linking and immunoprecipitation (CLIP) is a transformative technology in which RNAs purified from _in vivo_ cross-linked RNA-protein complexes are sequenced to reveal footprints of RNABP:RNA contacts. CLIP combined with high-throughput sequencing (HITS-CLIP) is a generalizable strategy to produce transcriptome-wide maps of RNA binding with higher accuracy and resolution than standard RNA immunoprecipitation (RIP) profiling or purely computational approaches. The application of CLIP to Argonaute proteins has expanded the utility of this approach to mapping binding sites for microRNAs and other small regulatory RNAs. Finally, recent advances in data analysis take advantage of cross-link–induced mutation sites (CIMS) to refine RNA-binding maps to single-nucleotide resolution. Once IP conditions are established, HITS-CLIP takes ~8 d to prepare RNA for sequencing. Established pipelines for data analysis, including those for CIMS, take 3–4 d. Workflow -------- CLIP begins with the in-vivo cross-linking of RNA-protein complexes using ultraviolet light (UV). Upon UV exposure, covalent bonds are formed between proteins and nucleic acids that are in close proximity. (Darnell|2012) The cross-linked cells are then lysed, and the protein of interest is isolated via immunoprecipitation. In order to allow for sequence specific priming of reverse transcription, RNA adapters are ligated to the 3' ends, while radiolabeled phosphates are transferred to the 5' ends of the RNA fragments. The RNA-protein complexes are then separated from free RNA using gel electrophoresis and membrane transfer. Proteinase K digestion is then performed in order to remove protein from the RNA-protein complexes. This step leaves a peptide at the cross-link site, allowing for the identification of the cross-linked nucleotide. (König| McGlincy| Ule|2012) After ligating RNA linkers to the RNA 5' ends, cDNA is synthesized via RT-PCR. High-throughput sequencing is then used to generate reads containing distinct barcodes that identify the last cDNA nucleotide. Interaction sites can be identified by mapping the reads back to the transcriptome.

https://github.com/datirium/workflows.git

Path: workflows/clipseq-se.cwl

Branch/Commit ID: 10ce6e113f749c7bd725e426445220c3bdc5ddf1

workflow graph basename-fields-test.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/basename-fields-test.cwl

Branch/Commit ID: 26870e38cec81af880cd3e4789ae6cee8fc27020

workflow graph Single-Cell Preprocessing Pipeline

Devel version of Single-Cell Preprocessing Pipeline ===================================================

https://github.com/datirium/workflows.git

Path: workflows/single-cell-preprocess.cwl

Branch/Commit ID: 92f1a6da9c4f85fb51340b01b32373a50fde0891

workflow graph align_sort_sa

https://github.com/ncbi/pgap.git

Path: task_types/tt_align_sort_sa.cwl

Branch/Commit ID: 3e7a3c1cc1ed5164ae0a51a96f20d7c480d1d70b

workflow graph Trim Galore RNA-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **pair-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ files 2. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-pe.cwl

Branch/Commit ID: 92f1a6da9c4f85fb51340b01b32373a50fde0891

workflow graph inpdir_update_wf.cwl

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/inpdir_update_wf.cwl

Branch/Commit ID: 368b562a1449e8cd39ae8b7f05926b2bfb9b22df

workflow graph Detect DoCM variants

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/docm_germline.cwl

Branch/Commit ID: dc2c019c1aa24cc01b451a0f048cf94a35f163c4

workflow graph scatter-valuefrom-wf3.cwl#main

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/scatter-valuefrom-wf3.cwl

Branch/Commit ID: 5f27e234b4ca88ed1280dedf9e3391a01de12912

Packed ID: main

workflow graph Single-Cell Preprocessing Cell Ranger Pipeline

Devel version of Single-Cell Preprocessing Cell Ranger Pipeline ===============================================================

https://github.com/datirium/workflows.git

Path: workflows/single-cell-preprocess-cellranger.cwl

Branch/Commit ID: 92f1a6da9c4f85fb51340b01b32373a50fde0891