Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph gcaccess_from_list

https://github.com/ncbi/pgap.git

Path: task_types/tt_gcaccess_from_list.cwl

Branch/Commit ID: cd97086739ae5988bab09b05e9259675c4b6bce6

workflow graph any-type-compat.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/any-type-compat.cwl

Branch/Commit ID: 26870e38cec81af880cd3e4789ae6cee8fc27020

workflow graph Genome conversion and annotation

Workflow for genome annotation from EMBL format

https://git.wur.nl/unlock/cwl.git

Path: cwl/workflows/workflow_sapp_microbes.cwl

Branch/Commit ID: 2242521957bb07fc589d6bb07046f6a166bc975a

workflow graph scatter-wf1.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/scatter-wf1.cwl

Branch/Commit ID: 3ed10d0ea7ac57550433a89a92bdbe756bdb0e40

workflow graph mut3.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/mut3.cwl

Branch/Commit ID: e4d42b85d24cd5088e14cc31d67c2dee0c6fc40a

workflow graph fasta2taxa-plot

Input is a fasta file with n>1 samples, with sample id as sequence identifier prefix, and a sample id file. The workflow calls open otus and assigns taxa using greengenes. The output are taxa plots.

https://github.com/MG-RAST/qiime-pipeline.git

Path: CWL/Workflows/qiime/join-reads2plot.cwl

Branch/Commit ID: 962607ff14f4468ef8114b76c6e8c1ed5e543e3f

workflow graph gwas.cwl

https://github.com/common-workflow-lab/wdl-cwl-translator.git

Path: wdl2cwl/tests/cwl_files/gwas.cwl

Branch/Commit ID: 95fb3e295823bd124b017b6c063d224fbd28457d

workflow graph mut.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/mut.cwl

Branch/Commit ID: 898fddf9167620645177eb94c8ea68ede0667f96

workflow graph cond-wf-003.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/conditionals/cond-wf-003.cwl

Branch/Commit ID: 707ebcd2173889604459c5f4ffb55173c508abb3

workflow graph Trim Galore ATAC-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **paired-end** experiment with Trim Galore. The pipeline was adapted for ATAC-Seq paired-end data analysis by updating genome coverage step. _Trim Galore_ is a wrapper around [Cutadapt](https://github.com/marcelm/cutadapt) and [FastQC](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data. A [FASTQ](http://maq.sourceforge.net/fastq.shtml) input file has to be provided. In outputs it returns coordinate sorted BAM file alongside with index BAI file, quality statistics for both the input FASTQ files, reads coverage in a form of BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot (on the base of BAM file). Workflow starts with running fastx_quality_stats (steps fastx_quality_stats_upstream and fastx_quality_stats_downstream) from FASTX-Toolkit to calculate quality statistics for both upstream and downstream input FASTQ files. At the same time Bowtie is used to align reads from input FASTQ files to reference genome (Step bowtie_aligner). The output of this step is unsorted SAM file which is being sorted and indexed by samtools sort and samtools index (Step samtools_sort_index). Depending on workflow’s input parameters indexed and sorted BAM file could be processed by samtools rmdup (Step samtools_rmdup) to remove all possible read duplicates. In a case when removing duplicates is not necessary the step returns original input BAM and BAI files without any processing. If the duplicates were removed the following step (Step samtools_sort_index_after_rmdup) reruns samtools sort and samtools index with BAM and BAI files, if not - the step returns original unchanged input files. Right after that macs2 callpeak performs peak calling (Step macs2_callpeak). On the base of returned outputs the next step (Step macs2_island_count) calculates the number of islands and estimated fragment size. If the last one is less that 80 (hardcoded in a workflow) macs2 callpeak is rerun again with forced fixed fragment size value (Step macs2_callpeak_forced). If at the very beginning it was set in workflow input parameters to force run peak calling with fixed fragment size, this step is skipped and the original peak calling results are saved. In the next step workflow again calculates the number of islands and estimated fragment size (Step macs2_island_count_forced) for the data obtained from macs2_callpeak_forced step. If the last one was skipped the results from macs2_island_count_forced step are equal to the ones obtained from macs2_island_count step. Next step (Step macs2_stat) is used to define which of the islands and estimated fragment size should be used in workflow output: either from macs2_island_count step or from macs2_island_count_forced step. If input trigger of this step is set to True it means that macs2_callpeak_forced step was run and it returned different from macs2_callpeak step results, so macs2_stat step should return [fragments_new, fragments_old, islands_new], if trigger is False the step returns [fragments_old, fragments_old, islands_old], where sufix \"old\" defines results obtained from macs2_island_count step and sufix \"new\" - from macs2_island_count_forced step. The following two steps (Step bamtools_stats and bam_to_bigwig) are used to calculate coverage on the base of input BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads number which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it in BED format. The last one is then being sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. To adapt the pipeline for ATAC-Seq data analysis we calculate genome coverage using only the first 9 bp from every read. Step get_stat is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step island_intersect assigns genes and regions to the islands obtained from macs2_callpeak_forced. Step average_tag_density is used to calculate data for average tag density plot on the base of BAM file.

https://github.com/datirium/workflows.git

Path: workflows/trim-atacseq-pe.cwl

Branch/Commit ID: 4106b7dc96e968db291b7a61ecd1641aa3b3dd6d