Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph kmer_cache_retrieve

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_cache_retrieve.cwl

Branch/Commit ID: 2801ce53744a085580a8de91cd007c45146b51e8

workflow graph tt_fscr_calls_pass1

https://github.com/ncbi/pgap.git

Path: task_types/tt_fscr_calls_pass1.cwl

Branch/Commit ID: 23f0ee7a36649ab37cabdd9277b7c82d098be79c

workflow graph env-wf3.cwl

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/env-wf3.cwl

Branch/Commit ID: b1d4a69df86350059bd49aa127c02be0c349f7de

workflow graph RNA-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **paired-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the paired-end RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 4. Generate BigWig file on the base of sorted BAM file 5. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 6. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-pe.cwl

Branch/Commit ID: e99e80a2c19682d59947bde04a892d7b6d90091c

workflow graph scatter-wf4.cwl#main

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/scatter-wf4.cwl

Branch/Commit ID: b1d4a69df86350059bd49aa127c02be0c349f7de

Packed ID: main

workflow graph Cellranger aggr - aggregates data from multiple Cellranger runs

Devel version of Single-Cell Cell Ranger Aggregate ================================================== Workflow calls \"cellranger aggr\" command to combine output files from \"cellranger count\" (the molecule_info.h5 file from each run) into a single feature-barcode matrix containing all the data. When combining multiple GEM wells, the barcode sequences for each channel are distinguished by a GEM well suffix appended to the barcode sequence. Each GEM well is a physically distinct set of GEM partitions, but draws barcode sequences randomly from the pool of valid barcodes, known as the barcode whitelist. To keep the barcodes unique when aggregating multiple libraries, we append a small integer identifying the GEM well to the barcode nucleotide sequence, and use that nucleotide sequence plus ID as the unique identifier in the feature-barcode matrix. For example, AGACCATTGAGACTTA-1 and AGACCATTGAGACTTA-2 are distinct cell barcodes from different GEM wells, despite having the same barcode nucleotide sequence. This number, which tells us which GEM well this barcode sequence came from, is called the GEM well suffix. The numbering of the GEM wells will reflect the order that the GEM wells were provided in the \"molecule_info_h5\" and \"gem_well_labels\" inputs. When combining data from multiple GEM wells, the \"cellranger aggr\" pipeline automatically equalizes the average read depth per cell between groups before merging. This approach avoids artifacts that may be introduced due to differences in sequencing depth. It is possible to turn off normalization or change the way normalization is done through the \"normalization_mode\" input. The \"none\" value may be appropriate if you want to maximize sensitivity and plan to deal with depth normalization in a downstream step.

https://github.com/datirium/workflows.git

Path: workflows/cellranger-aggr.cwl

Branch/Commit ID: e99e80a2c19682d59947bde04a892d7b6d90091c

workflow graph gp_makeblastdb

https://github.com/ncbi/pgap.git

Path: progs/gp_makeblastdb.cwl

Branch/Commit ID: ac387721a55fd91df3dcdf16e199354618b136d1

workflow graph Add snv and indel bam-readcount files to a vcf

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/vcf_readcount_annotator.cwl

Branch/Commit ID: ae57b60e9b01e3f0f02f4e828042748409dff5a3

workflow graph cache_asnb_entries

https://github.com/ncbi/pgap.git

Path: task_types/tt_cache_asnb_entries.cwl

Branch/Commit ID: 23f0ee7a36649ab37cabdd9277b7c82d098be79c

workflow graph exome alignment and germline variant detection, with optitype for HLA typing

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/germline_exome_hla_typing.cwl

Branch/Commit ID: 0805e8e0d358136468e0a9f49e06005e41965adc