Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Replace legacy AML Trio Assay

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/aml_trio_cle.cwl

Branch/Commit ID: b9e7392e72506cadd898a6ac4db330baf6535ab6

workflow graph wgs alignment and germline variant detection

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/germline_wgs.cwl

Branch/Commit ID: 35e6b3ef71b4a2a9caba1dbd5dc424a8809bcc0a

workflow graph Single-Cell Multiome ATAC-Seq and RNA-Seq Filtering Analysis

Single-Cell Multiome ATAC-Seq and RNA-Seq Filtering Analysis Removes low-quality cells from the outputs of the “Cell Ranger Count (RNA+ATAC)” and “Cell Ranger Aggregate (RNA+ATAC)” pipelines. The results of this workflow are used in the “Single-Cell RNA-Seq Dimensionality Reduction Analysis” and “Single-Cell ATAC-Seq Dimensionality Reduction Analysis” pipelines.

https://github.com/datirium/workflows.git

Path: workflows/sc-multiome-filter.cwl

Branch/Commit ID: 261c0232a7a40880f2480b811ed2d7e89c463869

workflow graph process VCF workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/strelka_process_vcf.cwl

Branch/Commit ID: 641083e9ed933d388f36fa04c00c20a810599e94

workflow graph bam to trimmed fastqs and HISAT alignments

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/bam_to_trimmed_fastq_and_hisat_alignments.cwl

Branch/Commit ID: d2c2f2eb846ae2e9cdcab46e3bb88e42126cb3f5

workflow graph protein annotation

Proteins - predict, filter, cluster, identify, annotate

https://github.com/MG-RAST/pipeline.git

Path: CWL/Workflows/protein-filter-annotation.workflow.cwl

Branch/Commit ID: f906212e2c9a88280ae36545e5422f25752aa8f4

workflow graph varscan somatic workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/varscan.cwl

Branch/Commit ID: 76a35e7d885790f30559beb31f3b58770e343afd

workflow graph Trim Galore RNA-Seq pipeline single-read

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **single-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ file 2. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-se.cwl

Branch/Commit ID: a8eaf61c809d76f55780b14f2febeb363cf6373f

workflow graph Transcripts annotation workflow

https://github.com/mscheremetjew/workflow-is-cwl.git

Path: workflows/TranscriptsAnnotation-i5only-wf.cwl

Branch/Commit ID: f059802f5e3601d32ead1fe5b8f24586d8cceaeb

workflow graph Trim Galore SMARTer RNA-Seq pipeline paired-end strand specific

https://chipster.csc.fi/manual/library-type-summary.html Modified original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **pair-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ files 2. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-pe-smarter-dutp.cwl

Branch/Commit ID: 261c0232a7a40880f2480b811ed2d7e89c463869