Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Trim Galore RNA-Seq pipeline single-read

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **single-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ file 2. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-se.cwl

Branch/Commit ID: ee66d03be8a7fd61367db40c37a973ff55ece4da

workflow graph Immunotherapy Workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/immuno.cwl

Branch/Commit ID: 788bdc99c1d5b6ee7c431c3c011eb30d385c1370

workflow graph Single-Cell Multiome ATAC-Seq and RNA-Seq Filtering Analysis

Single-Cell Multiome ATAC-Seq and RNA-Seq Filtering Analysis Removes low-quality cells from the outputs of the “Cell Ranger Count (RNA+ATAC)” and “Cell Ranger Aggregate (RNA+ATAC)” pipelines. The results of this workflow are used in the “Single-Cell RNA-Seq Dimensionality Reduction Analysis” and “Single-Cell ATAC-Seq Dimensionality Reduction Analysis” pipelines.

https://github.com/datirium/workflows.git

Path: workflows/sc-multiome-filter.cwl

Branch/Commit ID: 93b844a80f4008cc973ea9b5efedaff32a343895

workflow graph Kraken2 Database installation pipeline

This workflow downloads the user-selected pre-built kraken2 database from: https://benlangmead.github.io/aws-indexes/k2 ### __Inputs__ Select a pre-built Kraken2 database to download and use for metagenomic classification: - Available options comprised of various combinations of RefSeq reference genome sets: - [Viral (0.5 GB)](https://genome-idx.s3.amazonaws.com/kraken/k2_viral_20221209.tar.gz), all refseq viral genomes - [MinusB (8.7 GB)](https://genome-idx.s3.amazonaws.com/kraken/k2_minusb_20221209.tar.gz), standard minus bacteria (archaea, viral, plasmid, human1, UniVec_Core) - [PlusPFP-16 (15.0 GB)](https://genome-idx.s3.amazonaws.com/kraken/k2_pluspfp_16gb_20221209.tar.gz), standard (archaea, bacteria, viral, plasmid, human1, UniVec_Core) + (protozoa, fungi & plant) capped at 16 GB (shrunk via random kmer downselect) - [EuPathDB46 (34.1 GB)](https://genome-idx.s3.amazonaws.com/kraken/k2_eupathdb48_20201113.tar.gz), eukaryotic pathogen genomes with contaminants removed (https://veupathdb.org/veupathdb/app) - [16S_gg_13_5 (73 MB)](https://genome-idx.s3.amazonaws.com/kraken/16S_Greengenes13.5_20200326.tgz), Greengenes 16S rRNA database ([release 13.5](https://greengenes.secondgenome.com/?prefix=downloads/greengenes_database/gg_13_5/), 20200326)\n - [16S_silva_138 (112 MB)](https://genome-idx.s3.amazonaws.com/kraken/16S_Silva138_20200326.tgz), SILVA 16S rRNA database ([release 138.1](https://www.arb-silva.de/documentation/release-1381/), 20200827) ### __Outputs__ - k2db, an upstream database used by kraken2 classification tool - compressed_k2db_tar, compressed and tarred kraken2 database directory file for download and use outside of scidap ### __Data Analysis Steps__ 1. download selected pre-built kraken2 database. 2. make available as upstream source for kraken2 metagenomic taxonomic classification. ### __References__ - Wood, D.E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol 20, 257 (2019). https://doi.org/10.1186/s13059-019-1891-0

https://github.com/datirium/workflows.git

Path: workflows/kraken2-databases.cwl

Branch/Commit ID: 93b844a80f4008cc973ea9b5efedaff32a343895

workflow graph workflow_input_format_expr.cwl

https://github.com/common-workflow-language/cwl-utils.git

Path: testdata/workflow_input_format_expr.cwl

Branch/Commit ID: b76b039edb62dea76c43f173848cdc57e4b4aab7

workflow graph cond-single-source-wf-005.1.cwl

https://github.com/common-workflow-language/cwl-utils.git

Path: testdata/cond-single-source-wf-005.1.cwl

Branch/Commit ID: b76b039edb62dea76c43f173848cdc57e4b4aab7

workflow graph step-valuefrom2-wf_v1_2.cwl

https://github.com/common-workflow-language/cwl-utils.git

Path: testdata/step-valuefrom2-wf_v1_2.cwl

Branch/Commit ID: b76b039edb62dea76c43f173848cdc57e4b4aab7

workflow graph scatter GATK HaplotypeCaller over intervals

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/gatk_haplotypecaller_iterator.cwl

Branch/Commit ID: 735be84cdea041fcc8bd8cbe5728b29ca3586a21

workflow graph wgs alignment with qc

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/alignment_wgs.cwl

Branch/Commit ID: 3034168d652bfa930ba09af20e473a4564a8010d

workflow graph Varscan Workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/varscan_germline.cwl

Branch/Commit ID: 4bc0a4577d626b65a4b44683e5a1ab2f7d7faf4c