Explore Workflows
View already parsed workflows here or click here to add your own
| Graph | Name | Retrieved From | View |
|---|---|---|---|
|
|
Trim Galore RNA-Seq pipeline single-read
The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **single-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ file 2. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file |
Path: workflows/trim-rnaseq-se.cwl Branch/Commit ID: ee66d03be8a7fd61367db40c37a973ff55ece4da |
|
|
|
Immunotherapy Workflow
|
Path: definitions/pipelines/immuno.cwl Branch/Commit ID: 788bdc99c1d5b6ee7c431c3c011eb30d385c1370 |
|
|
|
Single-Cell Multiome ATAC-Seq and RNA-Seq Filtering Analysis
Single-Cell Multiome ATAC-Seq and RNA-Seq Filtering Analysis Removes low-quality cells from the outputs of the “Cell Ranger Count (RNA+ATAC)” and “Cell Ranger Aggregate (RNA+ATAC)” pipelines. The results of this workflow are used in the “Single-Cell RNA-Seq Dimensionality Reduction Analysis” and “Single-Cell ATAC-Seq Dimensionality Reduction Analysis” pipelines. |
Path: workflows/sc-multiome-filter.cwl Branch/Commit ID: 93b844a80f4008cc973ea9b5efedaff32a343895 |
|
|
|
Kraken2 Database installation pipeline
This workflow downloads the user-selected pre-built kraken2 database from: https://benlangmead.github.io/aws-indexes/k2 ### __Inputs__ Select a pre-built Kraken2 database to download and use for metagenomic classification: - Available options comprised of various combinations of RefSeq reference genome sets: - [Viral (0.5 GB)](https://genome-idx.s3.amazonaws.com/kraken/k2_viral_20221209.tar.gz), all refseq viral genomes - [MinusB (8.7 GB)](https://genome-idx.s3.amazonaws.com/kraken/k2_minusb_20221209.tar.gz), standard minus bacteria (archaea, viral, plasmid, human1, UniVec_Core) - [PlusPFP-16 (15.0 GB)](https://genome-idx.s3.amazonaws.com/kraken/k2_pluspfp_16gb_20221209.tar.gz), standard (archaea, bacteria, viral, plasmid, human1, UniVec_Core) + (protozoa, fungi & plant) capped at 16 GB (shrunk via random kmer downselect) - [EuPathDB46 (34.1 GB)](https://genome-idx.s3.amazonaws.com/kraken/k2_eupathdb48_20201113.tar.gz), eukaryotic pathogen genomes with contaminants removed (https://veupathdb.org/veupathdb/app) - [16S_gg_13_5 (73 MB)](https://genome-idx.s3.amazonaws.com/kraken/16S_Greengenes13.5_20200326.tgz), Greengenes 16S rRNA database ([release 13.5](https://greengenes.secondgenome.com/?prefix=downloads/greengenes_database/gg_13_5/), 20200326)\n - [16S_silva_138 (112 MB)](https://genome-idx.s3.amazonaws.com/kraken/16S_Silva138_20200326.tgz), SILVA 16S rRNA database ([release 138.1](https://www.arb-silva.de/documentation/release-1381/), 20200827) ### __Outputs__ - k2db, an upstream database used by kraken2 classification tool - compressed_k2db_tar, compressed and tarred kraken2 database directory file for download and use outside of scidap ### __Data Analysis Steps__ 1. download selected pre-built kraken2 database. 2. make available as upstream source for kraken2 metagenomic taxonomic classification. ### __References__ - Wood, D.E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol 20, 257 (2019). https://doi.org/10.1186/s13059-019-1891-0 |
Path: workflows/kraken2-databases.cwl Branch/Commit ID: 93b844a80f4008cc973ea9b5efedaff32a343895 |
|
|
|
workflow_input_format_expr.cwl
|
Path: testdata/workflow_input_format_expr.cwl Branch/Commit ID: b76b039edb62dea76c43f173848cdc57e4b4aab7 |
|
|
|
cond-single-source-wf-005.1.cwl
|
Path: testdata/cond-single-source-wf-005.1.cwl Branch/Commit ID: b76b039edb62dea76c43f173848cdc57e4b4aab7 |
|
|
|
step-valuefrom2-wf_v1_2.cwl
|
Path: testdata/step-valuefrom2-wf_v1_2.cwl Branch/Commit ID: b76b039edb62dea76c43f173848cdc57e4b4aab7 |
|
|
|
scatter GATK HaplotypeCaller over intervals
|
Path: definitions/subworkflows/gatk_haplotypecaller_iterator.cwl Branch/Commit ID: 735be84cdea041fcc8bd8cbe5728b29ca3586a21 |
|
|
|
wgs alignment with qc
|
Path: definitions/pipelines/alignment_wgs.cwl Branch/Commit ID: 3034168d652bfa930ba09af20e473a4564a8010d |
|
|
|
Varscan Workflow
|
Path: definitions/subworkflows/varscan_germline.cwl Branch/Commit ID: 4bc0a4577d626b65a4b44683e5a1ab2f7d7faf4c |
