Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph count-lines8-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/count-lines8-wf.cwl

Branch/Commit ID: bfe56f3138e9e6fc0b9b8c06447553d4cea03d59

workflow graph count-lines10-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/count-lines10-wf.cwl

Branch/Commit ID: 047e69bb169e79fad6a7285ee798c4ecec3b218b

workflow graph Salmon quantification, FASTQ -> H5AD count matrix

https://github.com/hubmapconsortium/salmon-rnaseq.git

Path: steps/salmon-quantification.cwl

Branch/Commit ID: 69da10ae891ce1ea821a59b9d0f33c9b931c88a9

workflow graph workflow_demultiplexing.cwl

https://git.wur.nl/unlock/cwl.git

Path: cwl/workflows/workflow_demultiplexing.cwl

Branch/Commit ID: 2242521957bb07fc589d6bb07046f6a166bc975a

workflow graph ChIP-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **paired-end** experiment. A [FASTQ](http://maq.sourceforge.net/fastq.shtml) input file has to be provided. The pipeline produces a sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, coverage by estimated fragments as a BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot. Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is an unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Depending on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools rmdup` *samtools\_rmdup* to get rid of duplicated reads. If removing duplicates is not required the original BAM and BAI files are returned. Otherwise step *samtools\_sort\_index\_after\_rmdup* repeat `samtools sort` and `samtools index` with BAM and BAI files without duplicates. Next `macs2 callpeak` performs peak calling *macs2\_callpeak* and the next step reports *macs2\_island\_count* the number of islands and estimated fragment size. If the latter is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). It is also possible to force MACS2 to use pre set fragment size in the first place. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage from BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it as a BEDgraph file whichis then sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns nearest genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot from the BAM file.

https://github.com/datirium/workflows.git

Path: workflows/chipseq-pe.cwl

Branch/Commit ID: cbefc215d8286447620664fb47076ba5d81aa47f

workflow graph 01-qc-pe.cwl

ChIP-seq 01 QC - reads: PE

https://github.com/Duke-GCB/GGR-cwl.git

Path: v1.0/ChIP-seq_pipeline/01-qc-pe.cwl

Branch/Commit ID: f053d1a92762b38b950c4982e3b344cec26f4f36

workflow graph exome alignment and somatic variant detection

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/somatic_exome_nonhuman.cwl

Branch/Commit ID: 8da2b1cd6fa379b2c22baf9dad762d39630e6f46

workflow graph canine_add_rna_header_to_vcf_module.cwl

https://github.com/d3b-center/canine-dev.git

Path: subworkflows/canine_add_rna_header_to_vcf_module.cwl

Branch/Commit ID: 462aaebbd442e84ea101b45b716df0174b88512e

workflow graph bact_get_kmer_reference

https://github.com/ncbi/pgap.git

Path: task_types/tt_bact_get_kmer_reference.cwl

Branch/Commit ID: 1b8d71c75156a1a62bf0477d59db26010e2dcc29

workflow graph checkm_wnode

https://github.com/ncbi/pgap.git

Path: task_types/tt_checkm_wnode.cwl

Branch/Commit ID: 55b6ee46b0c9fb1c9949cd0888b388c6f11b73b1