Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Trim Galore RNA-Seq pipeline single-read

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **single-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ file 2. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-se.cwl

Branch/Commit ID: cbefc215d8286447620664fb47076ba5d81aa47f

workflow graph checkm_wnode

https://github.com/ncbi/pgap.git

Path: task_types/tt_checkm_wnode.cwl

Branch/Commit ID: c17cac4c046f8ba2b8574a121c44a72d2e6b27e6

workflow graph Feature expression merge - combines feature expression from several experiments

Feature expression merge - combines feature expression from several experiments ========================================================================= Workflows merges RPKM (by default) gene expression from several experiments based on the values from GeneId, Chrom, TxStart, TxEnd and Strand columns (by default). Reported unique columns are renamed based on the experiments names.

https://github.com/datirium/workflows.git

Path: workflows/feature-merge.cwl

Branch/Commit ID: 22880e0f41d0420a17d643e8a6e8ee18165bbfbf

workflow graph steplevel-resreq.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/steplevel-resreq.cwl

Branch/Commit ID: fd6e054510e2bb65eed4069a3a88013d7ecbb99c

workflow graph dynresreq-workflow.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/dynresreq-workflow.cwl

Branch/Commit ID: 2ae8117360a3cd4909d9d3f2b35c30bfffb25d0a

workflow graph RNA-Seq pipeline single-read stranded mitochondrial

Slightly changed original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for **strand specific single-read** experiment. An additional steps were added to map data to mitochondrial chromosome only and then merge the output. Experiment files in [FASTQ](http://maq.sourceforge.net/fastq.shtml) format either compressed or not can be used. Current workflow should be used only with single-read strand specific RNA-Seq data. It performs the following steps: 1. `STAR` to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. `fastx_quality_stats` to analyze input FASTQ file and generate quality statistics file 3. `samtools sort` to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using `GEEP` reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-se-dutp-mitochondrial.cwl

Branch/Commit ID: 22880e0f41d0420a17d643e8a6e8ee18165bbfbf

workflow graph step-valuefrom-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/step-valuefrom-wf.cwl

Branch/Commit ID: e8b3565a008d95859fc44227987a54e6a53a8c29

workflow graph gp_makeblastdb

https://github.com/ncbi/pgap.git

Path: progs/gp_makeblastdb.cwl

Branch/Commit ID: 8cc9b995bca666c54c673a5eb8d9b8c6f8e84490

workflow graph Generate genome indices for STAR & bowtie

Creates indices for: * [STAR](https://github.com/alexdobin/STAR) v2.5.3a (03/17/2017) PMID: [23104886](https://www.ncbi.nlm.nih.gov/pubmed/23104886) * [bowtie](http://bowtie-bio.sourceforge.net/tutorial.shtml) v1.2.0 (12/30/2016) It performs the following steps: 1. `STAR --runMode genomeGenerate` to generate indices, based on [FASTA](http://zhanglab.ccmb.med.umich.edu/FASTA/) and [GTF](http://mblab.wustl.edu/GTF2.html) input files, returns results as an array of files 2. Outputs indices as [Direcotry](http://www.commonwl.org/v1.0/CommandLineTool.html#Directory) data type 3. Separates *chrNameLength.txt* file from Directory output 4. `bowtie-build` to generate indices requires genome [FASTA](http://zhanglab.ccmb.med.umich.edu/FASTA/) file as input, returns results as a group of main and secondary files

https://github.com/datirium/workflows.git

Path: workflows/genome-indices.cwl

Branch/Commit ID: b5e16e359007150647b14dc6e038f4eb8dccda79

workflow graph HS Metrics workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/hs_metrics.cwl

Branch/Commit ID: 9c0b1497c467393e1a54735575043dced73e95c4