Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph umi molecular alignment workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/molecular_qc.cwl

Branch/Commit ID: 5cb188131f786ed33156e2f0e3dd63ab9c04245d

workflow graph Interval overlapping alignments counts

Interval overlapping alignments counts ====================================== Reports the count of alignments from multiple samples that overlap specific intervals.

https://github.com/datirium/workflows.git

Path: workflows/bedtools-multicov.cwl

Branch/Commit ID: a8eaf61c809d76f55780b14f2febeb363cf6373f

workflow graph mut3.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/mut3.cwl

Branch/Commit ID: ec2cf2da6c31ffedf827a0fb213b5204e172f510

workflow graph super-enhancer.cwl

Both `islands_file` and `islands_control_file` should be produced by the same cwl tool (iaintersect.cwl or macs2-callpeak-biowardrobe-only.cwl)

https://github.com/Barski-lab/workflows.git

Path: workflows/super-enhancer.cwl

Branch/Commit ID: c82a2e766abba032f0bbe2aa76e0176e69064569

workflow graph Trim Galore ChIP-Seq pipeline single-read

. This ChIP-Seq pipeline is based on the original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **single-read** experiment with Trim Galore. ### Data Analysis SciDAP starts from the .fastq files which most DNA cores and commercial NGS companies return. Starting from raw data allows us to ensure that all experiments have been processed in the same way and simplifies the deposition of data to GEO upon publication. The data can be uploaded from users computer, downloaded directly from an ftp server of the core facility by providing a URL or from GEO by providing SRA accession number. Our current pipelines include the following steps: 1. Trimming the adapters with TrimGalore. This step is particularly important when the reads are long and the fragments are short-resulting in sequencing adapters at the end of read. If adapter is not removed the read will not map. TrimGalore can recognize standard adapters, such as Illumina or Nexterra/Tn5 adapters. 2. QC 3. (Optional) trimming adapters on 5' or 3' end by the specified number of bases. 4. Mapping reads with BowTie. Only uniquely mapped reads with less than 3 mismatches are used in the downstream analysis. Results are saved as a .bam file. 5. (Optional) Removal of duplicates (reads/pairs of reads mapping to exactly same location). This step is used to remove reads overamplified in PCR. Unfortunately, it may also remove \"good\" reads. We usually do not remove duplicates unless the library is heavily duplicated. Please note that MACS2 will remove 'excessive' duplicates during peak calling ina smart way (those not supported by other nearby reads). 6. Peakcalling by MACS2. (Optionally), it is possible to specify read extension length for MACS2 to use if the length determined automatically is wrong. 7. Generation of BigWig coverage files for display on the browser. The coverage shows the number of fragments at each base in the genome normalized to the number of millions of mapped reads. In the case of PE sequencing the fragments are real, but in the case of single reads the fragments are estimated by extending reads to the average fragment length found by MACS2 or specified by the user in 6. ### Details _Trim Galore_ is a wrapper around [Cutadapt](https://github.com/marcelm/cutadapt) and [FastQC](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data. In outputs it returns coordinate sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, reads coverage in a form of BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot (on the base of BAM file). Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Based on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools markdup` *samtools\_remove\_duplicates* to get rid of duplicated reads. Right after that `macs2 callpeak` performs peak calling *macs2\_callpeak*. On the base of returned outputs the next step *macs2\_island\_count* calculates the number of islands and estimated fragment size. If the last one is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). If at the very beginning it was set in workflow input parameters to force run peak calling with fixed fragment size, this step is skipped and the original peak calling results are saved. In the next step workflow again calculates the number of islands and estimates fragment size (*macs2\_island\_count\_forced*) for the data obtained from *macs2\_callpeak\_forced* step. If the last one was skipped the results from *macs2\_island\_count\_forced* step are equal to the ones obtained from *macs2\_island\_count* step. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage on the base of input BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads number which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it in BED format. The last one is then being sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot on the base of BAM file.

https://github.com/datirium/workflows.git

Path: workflows/trim-chipseq-se.cwl

Branch/Commit ID: 57863b6131d8262c5ce864adaf8e4038401e71a2

workflow graph kmer_ref_compare_wnode

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_ref_compare_wnode.cwl

Branch/Commit ID: 16e3915d2a357e2a861b30911c832e5ddc0c1784

workflow graph checkm_wnode

https://github.com/ncbi/pgap.git

Path: task_types/tt_checkm_wnode.cwl

Branch/Commit ID: cb15f907132fb90bc66b39bb0af3c211801feba1

workflow graph protein_extract

https://github.com/ncbi/pgap.git

Path: progs/protein_extract.cwl

Branch/Commit ID: cb15f907132fb90bc66b39bb0af3c211801feba1

workflow graph bacterial_orthology

https://github.com/ncbi/pgap.git

Path: bacterial_orthology/wf_bacterial_orthology.cwl

Branch/Commit ID: be9d12a3f8e1924183a1dc6a0bda6ada4195ca71

workflow graph kmer_top_n_extract

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_top_n_extract.cwl

Branch/Commit ID: cb15f907132fb90bc66b39bb0af3c211801feba1