Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph heatmap-prepare.cwl

Workflow runs homer-make-tag-directory.cwl tool using scatter for the following inputs - bam_file - fragment_size - total_reads `dotproduct` is used as a `scatterMethod`, so one element will be taken from each array to construct each job: 1) bam_file[0] fragment_size[0] total_reads[0] 2) bam_file[1] fragment_size[1] total_reads[1] ... N) bam_file[N] fragment_size[N] total_reads[N] `bam_file`, `fragment_size` and `total_reads` arrays should have the identical order.

https://github.com/datirium/workflows.git

Path: subworkflows/heatmap-prepare.cwl

Branch/Commit ID: 4106b7dc96e968db291b7a61ecd1641aa3b3dd6d

workflow graph BWA index pipeline

This workflow indexes the input reference FASTA with bwa, and generates faidx and dict file using samtools. This index sample can then be used as input into the germline variant calling workflow, or others that may include this workflow as an upstream source. ### __Inputs__ - FASTA file of the reference genome that will be indexed. ### __Outputs__ - Directory containing the original FASTA, faidx, dict, and bwa index files. - stdout log file (output in Overview tab as well) - stderr log file ### __Data Analysis Steps__ 1. cwl calls dockercontainer robertplayer/scidap-gatk4 to index reference FASTA with bwa, and generates faidx and dict files using samtools ### __References__ - Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14), 1754–1760.

https://github.com/datirium/workflows.git

Path: workflows/bwa-index.cwl

Branch/Commit ID: 12e5256de1b680c551c87fd5db6f3bc65428af67

workflow graph directory.cwl

Inspect provided directory and return filenames. Generate a new directory and return it (including content).

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/directory.cwl

Branch/Commit ID: 280a852e74aec08cf79687e8004e17b1ab464534

workflow graph Bacterial Annotation, pass 1, genemark training, by HMMs (first pass)

https://github.com/ncbi/pgap.git

Path: bacterial_annot/wf_bacterial_annot_pass1.cwl

Branch/Commit ID: 343cb00abda2bc06daf9a32e1386c835f324ae6e

workflow graph Trim Galore RNA-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **pair-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ files 2. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-pe.cwl

Branch/Commit ID: dda9e6e06a656b7b3fa7504156474b962fe3953c

workflow graph cluster_blastp_wnode and gpx_qdump combined

https://github.com/ncbi/pgap.git

Path: task_types/tt_cluster_and_qdump.cwl

Branch/Commit ID: cb15f907132fb90bc66b39bb0af3c211801feba1

workflow graph Subworkflow to allow calling cnvkit with cram instead of bam files

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/cram_to_cnvkit.cwl

Branch/Commit ID: 3042812447d9e8889c6118986490e9c9b9b13223

workflow graph umi duplex alignment fastq workflow

https://github.com/apaul7/cancer-genomics-workflow.git

Path: definitions/pipelines/alignment_umi_duplex.cwl

Branch/Commit ID: bfcb5ffbea3d00a38cc03595d41e53ea976d599d

workflow graph kmer_cache_store

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_cache_store.cwl

Branch/Commit ID: e668f9c4047f1971ae53040a5af3eccc4bfc3c53

workflow graph Trim Galore RNA-Seq pipeline single-read

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **single-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ file 2. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-se.cwl

Branch/Commit ID: 44214a9d02e6d85b03eb708552ed812ae3d4a733