Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph bam-bedgraph-bigwig.cwl

Workflow converts input BAM file into bigWig and bedGraph files. Input BAM file should be sorted by coordinates (required by `bam_to_bedgraph` step). If `split` input is not provided use true by default. Default logic is implemented in `valueFrom` field of `split` input inside `bam_to_bedgraph` step to avoid possible bug in cwltool with setting default values for workflow inputs. `scale` has higher priority over the `mapped_reads_number`. The last one is used to calculate `-scale` parameter for `bedtools genomecov` (step `bam_to_bedgraph`) only in a case when input `scale` is not provided. All logic is implemented inside `bedtools-genomecov.cwl`. `bigwig_filename` defines the output name only for generated bigWig file. `bedgraph_filename` defines the output name for generated bedGraph file and can influence on generated bigWig filename in case when `bigwig_filename` is not provided. All workflow inputs and outputs don't have `format` field to avoid format incompatibility errors when workflow is used as subworkflow.

https://github.com/datirium/workflows.git

Path: tools/bam-bedgraph-bigwig.cwl

Branch/Commit ID: 36fd18f11e939d3908b1eca8d2939402f7a99b0f

workflow graph workflow_input_sf_expr_array_v1_1.cwl

https://github.com/common-workflow-language/cwl-utils.git

Path: testdata/workflow_input_sf_expr_array_v1_1.cwl

Branch/Commit ID: b76b039edb62dea76c43f173848cdc57e4b4aab7

workflow graph kfdrc_sentieon_alignment_wf.cwl

https://github.com/kids-first/kf-alignment-workflow.git

Path: workflows/kfdrc_sentieon_alignment_wf.cwl

Branch/Commit ID: 0e35fb09e15a7a6af52d9906111136a961b2c488

workflow graph count-lines1-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/count-lines1-wf.cwl

Branch/Commit ID: 63f539ba60e91f0cb3ce7cda2c5da5c65525c375

workflow graph Immunotherapy Workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/immuno.cwl

Branch/Commit ID: 4bc0a4577d626b65a4b44683e5a1ab2f7d7faf4c

workflow graph bam to trimmed fastqs and biscuit alignments

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/bam_to_trimmed_fastq_and_biscuit_alignments.cwl

Branch/Commit ID: 39ac49f5d080bbb6bfa97246f46a5b621254f622

workflow graph CLIP-Seq pipeline for single-read experiment NNNNG

Cross-Linking ImmunoPrecipitation ================================= `CLIP` (`cross-linking immunoprecipitation`) is a method used in molecular biology that combines UV cross-linking with immunoprecipitation in order to analyse protein interactions with RNA or to precisely locate RNA modifications (e.g. m6A). (Uhl|Houwaart|Corrado|Wright|Backofen|2017)(Ule|Jensen|Ruggiu|Mele|2003)(Sugimoto|König|Hussain|Zupan|2012)(Zhang|Darnell|2011) (Ke| Alemu| Mertens| Gantman|2015) CLIP-based techniques can be used to map RNA binding protein binding sites or RNA modification sites (Ke| Alemu| Mertens| Gantman|2015)(Ke| Pandya-Jones| Saito| Fak|2017) of interest on a genome-wide scale, thereby increasing the understanding of post-transcriptional regulatory networks. The identification of sites where RNA-binding proteins (RNABPs) interact with target RNAs opens the door to understanding the vast complexity of RNA regulation. UV cross-linking and immunoprecipitation (CLIP) is a transformative technology in which RNAs purified from _in vivo_ cross-linked RNA-protein complexes are sequenced to reveal footprints of RNABP:RNA contacts. CLIP combined with high-throughput sequencing (HITS-CLIP) is a generalizable strategy to produce transcriptome-wide maps of RNA binding with higher accuracy and resolution than standard RNA immunoprecipitation (RIP) profiling or purely computational approaches. The application of CLIP to Argonaute proteins has expanded the utility of this approach to mapping binding sites for microRNAs and other small regulatory RNAs. Finally, recent advances in data analysis take advantage of cross-link–induced mutation sites (CIMS) to refine RNA-binding maps to single-nucleotide resolution. Once IP conditions are established, HITS-CLIP takes ~8 d to prepare RNA for sequencing. Established pipelines for data analysis, including those for CIMS, take 3–4 d. Workflow -------- CLIP begins with the in-vivo cross-linking of RNA-protein complexes using ultraviolet light (UV). Upon UV exposure, covalent bonds are formed between proteins and nucleic acids that are in close proximity. (Darnell|2012) The cross-linked cells are then lysed, and the protein of interest is isolated via immunoprecipitation. In order to allow for sequence specific priming of reverse transcription, RNA adapters are ligated to the 3' ends, while radiolabeled phosphates are transferred to the 5' ends of the RNA fragments. The RNA-protein complexes are then separated from free RNA using gel electrophoresis and membrane transfer. Proteinase K digestion is then performed in order to remove protein from the RNA-protein complexes. This step leaves a peptide at the cross-link site, allowing for the identification of the cross-linked nucleotide. (König| McGlincy| Ule|2012) After ligating RNA linkers to the RNA 5' ends, cDNA is synthesized via RT-PCR. High-throughput sequencing is then used to generate reads containing distinct barcodes that identify the last cDNA nucleotide. Interaction sites can be identified by mapping the reads back to the transcriptome.

https://github.com/datirium/workflows.git

Path: workflows/clipseq-se.cwl

Branch/Commit ID: 36fd18f11e939d3908b1eca8d2939402f7a99b0f

workflow graph joint genotyping for trios or small cohorts

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/joint_genotype.cwl

Branch/Commit ID: 39ac49f5d080bbb6bfa97246f46a5b621254f622

workflow graph transform_pack.cwl#bwa_se.cwl

https://github.com/nci-gdc/gdc-dnaseq-cwl.git

Path: workflows/bamfastq_align/transform_pack.cwl

Branch/Commit ID: 3cb464a3a5c39cc060cd23d9c60918bc9ffb169b

Packed ID: bwa_se.cwl

workflow graph canine_lancet_module.cwl

https://github.com/d3b-center/canine-dev.git

Path: subworkflows/canine_lancet_module.cwl

Branch/Commit ID: 462aaebbd442e84ea101b45b716df0174b88512e