Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph HS Metrics workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/hs_metrics.cwl

Branch/Commit ID: 60edaf6f57eaaf02cda1a3d8cb9a825aa64a43e2

workflow graph Bismark Methylation - pipeline for BS-Seq data analysis

Sequence reads are first cleaned from adapters and transformed into fully bisulfite-converted forward (C->T) and reverse read (G->A conversion of the forward strand) versions, before they are aligned to similarly converted versions of the genome (also C->T and G->A converted). Sequence reads that produce a unique best alignment from the four alignment processes against the bisulfite genomes (which are running in parallel) are then compared to the normal genomic sequence and the methylation state of all cytosine positions in the read is inferred. A read is considered to align uniquely if an alignment has a unique best alignment score (as reported by the AS:i field). If a read produces several alignments with the same number of mismatches or with the same alignment score (AS:i field), a read (or a read-pair) is discarded altogether. On the next step we extract the methylation call for every single C analysed. The position of every single C will be written out to a new output file, depending on its context (CpG, CHG or CHH), whereby methylated Cs will be labelled as forward reads (+), non-methylated Cs as reverse reads (-). The output of the methylation extractor is then transformed into a bedGraph and coverage file. The bedGraph counts output is then used to generate a genome-wide cytosine report which reports the number on every single CpG (optionally every single cytosine) in the genome, irrespective of whether it was covered by any reads or not. As this type of report is informative for cytosines on both strands the output may be fairly large (~46mn CpG positions or >1.2bn total cytosine positions in the human genome).

https://github.com/datirium/workflows.git

Path: workflows/bismark-methylation-se.cwl

Branch/Commit ID: ee66d03be8a7fd61367db40c37a973ff55ece4da

workflow graph gcaccess_from_list

https://github.com/ncbi/pgap.git

Path: task_types/tt_gcaccess_from_list.cwl

Branch/Commit ID: 3bec7182e39cb4af10ed8920639adfa78a28ed81

workflow graph RNA-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **paired-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the paired-end RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 4. Generate BigWig file on the base of sorted BAM file 5. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 6. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-pe.cwl

Branch/Commit ID: f3e44d3b0f198cf5245c49011124dc3b6c2b06fd

workflow graph mut3.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/mut3.cwl

Branch/Commit ID: d5f7fa162611243f0c66dd3e933c16a4964a09ca

workflow graph rnaseq-se.cwl

Runs RNA-Seq BioWardrobe basic analysis with single-end data file.

https://github.com/Barski-lab/workflows.git

Path: workflows/rnaseq-se.cwl

Branch/Commit ID: 801f7b363e0599b9a28ecda696dfdb1c0e40ce71

workflow graph align_merge_sas

https://github.com/ncbi/pgap.git

Path: task_types/tt_align_merge_sas.cwl

Branch/Commit ID: 3bec7182e39cb4af10ed8920639adfa78a28ed81

workflow graph count-lines6-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/count-lines6-wf.cwl

Branch/Commit ID: 4700fbee9a5a3271eef8bc9ee595619d0720431b

workflow graph Motif Finding with HOMER with random background regions

Motif Finding with HOMER with random background regions --------------------------------------------------- HOMER contains a novel motif discovery algorithm that was designed for regulatory element analysis in genomics applications (DNA only, no protein). It is a differential motif discovery algorithm, which means that it takes two sets of sequences and tries to identify the regulatory elements that are specifically enriched in on set relative to the other. It uses ZOOPS scoring (zero or one occurrence per sequence) coupled with the hypergeometric enrichment calculations (or binomial) to determine motif enrichment. HOMER also tries its best to account for sequenced bias in the dataset. It was designed with ChIP-Seq and promoter analysis in mind, but can be applied to pretty much any nucleic acids motif finding problem. Here is how we generate background for Motifs Analysis ------------------------------------- 1. Take input file with regions in a form of “chr\" “start\" “end\" 2. Sort and remove duplicates from this regions file 3. Extend each region in 20Kb into both directions 4. Merge all overlapped extended regions 5. Subtract not extended regions from the extended ones 6. Randomly distribute not extended regions within the regions that we got as a result of the previous step 7. Get fasta file from these randomly distributed regions (from the previous step). Use it as background For more information please refer to: ------------------------------------- [Official documentation](http://homer.ucsd.edu/homer/motif/)

https://github.com/datirium/workflows.git

Path: workflows/homer-motif-analysis.cwl

Branch/Commit ID: 22880e0f41d0420a17d643e8a6e8ee18165bbfbf

workflow graph Single-cell WNN Cluster Analysis

Single-cell WNN Cluster Analysis Clusters multiome ATAC and RNA-Seq datasets, identifies gene markers and differentially accessible peaks.

https://github.com/datirium/workflows.git

Path: workflows/sc-wnn-cluster.cwl

Branch/Commit ID: 12e5256de1b680c551c87fd5db6f3bc65428af67