Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph kmer_top_n_extract

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_top_n_extract.cwl

Branch/Commit ID: be5ae41801b19ebc69a2889d8fdb39e8e2359611

workflow graph Align reference proteins plane complete workflow

https://github.com/ncbi-gpipe/pgap.git

Path: protein_alignment/wf_protein_alignment.cwl

Branch/Commit ID: 0b036c0e52935eeb413c784e14275b87d5eb028e

workflow graph exome alignment and tumor-only variant detection

https://github.com/apaul7/cancer-genomics-workflow.git

Path: definitions/pipelines/tumor_only_exome.cwl

Branch/Commit ID: bfcb5ffbea3d00a38cc03595d41e53ea976d599d

workflow graph MAnorm SE - quantitative comparison of ChIP-Seq single-read data

What is MAnorm? -------------- MAnorm is a robust model for quantitative comparison of ChIP-Seq data sets of TFs (transcription factors) or epigenetic modifications and you can use it for: * Normalization of two ChIP-seq samples * Quantitative comparison (differential analysis) of two ChIP-seq samples * Evaluating the overlap enrichment of the protein binding sites(peaks) * Elucidating underlying mechanisms of cell-type specific gene regulation How MAnorm works? ---------------- MAnorm uses common peaks of two samples as a reference to build the rescaling model for normalization, which is based on the empirical assumption that if a chromatin-associated protein has a substantial number of peaks shared in two conditions, the binding at these common regions will tend to be determined by similar mechanisms, and thus should exhibit similar global binding intensities across samples. The observed differences on common peaks are presumed to reflect the scaling relationship of ChIP-Seq signals between two samples, which can be applied to all peaks. What do the inputs mean? ---------------- ### General **Experiment short name/Alias** * short name for you experiment to identify among the others **ChIP-Seq SE sample 1** * previously analyzed ChIP-Seq single-read experiment to be used as Sample 1 **ChIP-Seq SE sample 2** * previously analyzed ChIP-Seq single-read experiment to be used as Sample 2 **Genome** * Reference genome to be used for gene assigning ### Advanced **Reads shift size for sample 1** * This value is used to shift reads towards 3' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **Reads shift size for sample 2** * This value is used to shift reads towards 5' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **M-value (log2-ratio) cutoff** * Absolute M-value (log2-ratio) cutoff to define biased (differential binding) peaks. Default: 1.0 **P-value cutoff** * P-value cutoff to define biased peaks. Default: 0.01 **Window size** * Window size to count reads and calculate read densities. 2000 is recommended for sharp histone marks like H3K4me3 and H3K27ac, and 1000 for TFs or DNase-seq. Default: 2000

https://github.com/datirium/workflows.git

Path: workflows/manorm-se.cwl

Branch/Commit ID: 36fd18f11e939d3908b1eca8d2939402f7a99b0f

workflow graph wgs alignment and germline variant detection

https://github.com/apaul7/cancer-genomics-workflow.git

Path: definitions/pipelines/germline_wgs_gvcf.cwl

Branch/Commit ID: bfcb5ffbea3d00a38cc03595d41e53ea976d599d

workflow graph Trim Galore RNA-Seq pipeline single-read

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **single-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ file 2. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-se.cwl

Branch/Commit ID: bf80c9339d81a78aefb8de661bff998ed86e836e

workflow graph Trim Galore RNA-Seq pipeline single-read strand specific

Note: should be updated The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **single-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ file 2. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-se-dutp.cwl

Branch/Commit ID: ee66d03be8a7fd61367db40c37a973ff55ece4da

workflow graph count-lines11-null-step-wf.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/count-lines11-null-step-wf.cwl

Branch/Commit ID: 31ec48a8d81ef7c1b2c5e9c0a19e7623efe4a1e2

workflow graph dynresreq-workflow-stepdefault.cwl

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/dynresreq-workflow-stepdefault.cwl

Branch/Commit ID: 50251ef931d108c09bed2d330d3d4fe9c562b1c3

workflow graph etl_http.cwl

https://github.com/NCI-GDC/gdc-dnaseq-cwl.git

Path: workflows/dnaseq/etl_http.cwl

Branch/Commit ID: 469bbb5e318146b3096f307f5d8e9f72cbd6bc06