Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph count-lines8-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/count-lines8-wf.cwl

Branch/Commit ID: 09323506da219ba3ddb5313bd83022b52cac9adc

workflow graph sec-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/sec-wf.cwl

Branch/Commit ID: fd6e054510e2bb65eed4069a3a88013d7ecbb99c

workflow graph format_rrnas_from_seq_entry

https://github.com/ncbi/pgap.git

Path: task_types/tt_format_rrnas_from_seq_entry.cwl

Branch/Commit ID: f403d9e26d60d3e3591a03077bc9dfa188b1c2bb

workflow graph RNA-Seq pipeline single-read stranded mitochondrial

Slightly changed original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for **strand specific single-read** experiment. An additional steps were added to map data to mitochondrial chromosome only and then merge the output. Experiment files in [FASTQ](http://maq.sourceforge.net/fastq.shtml) format either compressed or not can be used. Current workflow should be used only with single-read strand specific RNA-Seq data. It performs the following steps: 1. `STAR` to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. `fastx_quality_stats` to analyze input FASTQ file and generate quality statistics file 3. `samtools sort` to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using `GEEP` reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-se-dutp-mitochondrial.cwl

Branch/Commit ID: 57863b6131d8262c5ce864adaf8e4038401e71a2

workflow graph Detect Variants workflow for WGS pipeline

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/detect_variants_wgs.cwl

Branch/Commit ID: 788bdc99c1d5b6ee7c431c3c011eb30d385c1370

workflow graph mut.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/mut.cwl

Branch/Commit ID: 6b8f06a9f6f6a570142c7aedc767fea2efa2a0cc

workflow graph cond-single-source-wf-005.1.cwl

https://github.com/common-workflow-language/cwl-utils.git

Path: testdata/cond-single-source-wf-005.1.cwl

Branch/Commit ID: b926e330eba795f3acc1f71fd0645e75f925a2da

workflow graph gp_makeblastdb

https://github.com/ncbi/pgap.git

Path: progs/gp_makeblastdb.cwl

Branch/Commit ID: 369e2b6c7f4db75099d258729dec1326f55d2cc5

workflow graph Filter ChIP/ATAC peaks for Tag Density Profile or Motif Enrichment analyses

Filters ChIP/ATAC peaks with the neatest genes assigned for Tag Density Profile or Motif Enrichment analyses ============================================================================================================ Tool filters output from any ChIP/ATAC pipeline to create a file with regions of interest for Tag Density Profile or Motif Enrichment analyses. Peaks with duplicated coordinates are discarded.

https://github.com/datirium/workflows.git

Path: workflows/filter-peaks-for-heatmap.cwl

Branch/Commit ID: 36fd18f11e939d3908b1eca8d2939402f7a99b0f

workflow graph Trim Galore RNA-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **pair-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow must be used with paired-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ files 2. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 2 (after running STAR) 5. Generate BigWig file using sorted BAM file 6. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-pe.cwl

Branch/Commit ID: 57863b6131d8262c5ce864adaf8e4038401e71a2