Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph count-lines4-wf.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/count-lines4-wf.cwl

Branch/Commit ID: 7d7986a6e852ca6e3239c96d3a05dd536c76c903

workflow graph io-any-wf-1.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/io-any-wf-1.cwl

Branch/Commit ID: 7d7986a6e852ca6e3239c96d3a05dd536c76c903

workflow graph Single-Cell RNA-Seq Filtering Analysis

Single-Cell RNA-Seq Filtering Analysis Removes low-quality cells from the outputs of the “Cell Ranger Count (RNA)”, “Cell Ranger Count (RNA+VDJ)”, and “Cell Ranger Aggregate (RNA, RNA+VDJ)” pipelines. The results of this workflow are used in the “Single-Cell RNA-Seq Dimensionality Reduction Analysis” pipeline.

https://github.com/datirium/workflows.git

Path: workflows/sc-rna-filter.cwl

Branch/Commit ID: d76110e0bfc40c874f82e37cef6451d74df4f908

workflow graph Cut-n-Run pipeline paired-end

Experimental pipeline for Cut-n-Run analysis. Uses mapping results from the following experiment types: - `chipseq-pe.cwl` - `trim-chipseq-pe.cwl` - `trim-atacseq-pe.cwl` Note, the upstream analyses should not have duplicates removed

https://github.com/datirium/workflows.git

Path: workflows/trim-chipseq-pe-cut-n-run.cwl

Branch/Commit ID: d76110e0bfc40c874f82e37cef6451d74df4f908

workflow graph DESeq2 (LRT) - differential gene expression analysis using likelihood ratio test

Runs DESeq2 using LRT (Likelihood Ratio Test) ============================================= The LRT examines two models for the counts, a full model with a certain number of terms and a reduced model, in which some of the terms of the full model are removed. The test determines if the increased likelihood of the data using the extra terms in the full model is more than expected if those extra terms are truly zero. The LRT is therefore useful for testing multiple terms at once, for example testing 3 or more levels of a factor at once, or all interactions between two variables. The LRT for count data is conceptually similar to an analysis of variance (ANOVA) calculation in linear regression, except that in the case of the Negative Binomial GLM, we use an analysis of deviance (ANODEV), where the deviance captures the difference in likelihood between a full and a reduced model. When one performs a likelihood ratio test, the p values and the test statistic (the stat column) are values for the test that removes all of the variables which are present in the full design and not in the reduced design. This tests the null hypothesis that all the coefficients from these variables and levels of these factors are equal to zero. The likelihood ratio test p values therefore represent a test of all the variables and all the levels of factors which are among these variables. However, the results table only has space for one column of log fold change, so a single variable and a single comparison is shown (among the potentially multiple log fold changes which were tested in the likelihood ratio test). This indicates that the p value is for the likelihood ratio test of all the variables and all the levels, while the log fold change is a single comparison from among those variables and levels. **Technical notes** 1. At least two biological replicates are required for every compared category 2. Metadata file describes relations between compared experiments, for example ``` ,time,condition DH1,day5,WT DH2,day5,KO DH3,day7,WT DH4,day7,KO DH5,day7,KO ``` where `time, condition, day5, day7, WT, KO` should be a single words (without spaces) and `DH1, DH2, DH3, DH4, DH5` correspond to the experiment aliases set in **RNA-Seq experiments** input. 3. Design and reduced formulas should start with **~** and include categories or, optionally, their interactions from the metadata file header. See details in DESeq2 manual [here](https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#interactions) and [here](https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#likelihood-ratio-test) 4. Contrast should be set based on your metadata file header and available categories in a form of `Factor Numerator Denominator`, where `Factor` - column name from metadata file, `Numerator` - category from metadata file to be used as numerator in fold change calculation, `Denominator` - category from metadata file to be used as denominator in fold change calculation. For example `condition WT KO`.

https://github.com/datirium/workflows.git

Path: workflows/deseq-lrt.cwl

Branch/Commit ID: d76110e0bfc40c874f82e37cef6451d74df4f908

workflow graph MAnorm PE - quantitative comparison of ChIP-Seq paired-end data

What is MAnorm? -------------- MAnorm is a robust model for quantitative comparison of ChIP-Seq data sets of TFs (transcription factors) or epigenetic modifications and you can use it for: * Normalization of two ChIP-seq samples * Quantitative comparison (differential analysis) of two ChIP-seq samples * Evaluating the overlap enrichment of the protein binding sites(peaks) * Elucidating underlying mechanisms of cell-type specific gene regulation How MAnorm works? ---------------- MAnorm uses common peaks of two samples as a reference to build the rescaling model for normalization, which is based on the empirical assumption that if a chromatin-associated protein has a substantial number of peaks shared in two conditions, the binding at these common regions will tend to be determined by similar mechanisms, and thus should exhibit similar global binding intensities across samples. The observed differences on common peaks are presumed to reflect the scaling relationship of ChIP-Seq signals between two samples, which can be applied to all peaks. What do the inputs mean? ---------------- ### General **Experiment short name/Alias** * short name for you experiment to identify among the others **ChIP-Seq PE sample 1** * previously analyzed ChIP-Seq paired-end experiment to be used as Sample 1 **ChIP-Seq PE sample 2** * previously analyzed ChIP-Seq paired-end experiment to be used as Sample 2 **Genome** * Reference genome to be used for gene assigning ### Advanced **Reads shift size for sample 1** * This value is used to shift reads towards 3' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **Reads shift size for sample 2** * This value is used to shift reads towards 5' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **M-value (log2-ratio) cutoff** * Absolute M-value (log2-ratio) cutoff to define biased (differential binding) peaks. Default: 1.0 **P-value cutoff** * P-value cutoff to define biased peaks. Default: 0.01 **Window size** * Window size to count reads and calculate read densities. 2000 is recommended for sharp histone marks like H3K4me3 and H3K27ac, and 1000 for TFs or DNase-seq. Default: 2000

https://github.com/datirium/workflows.git

Path: workflows/manorm-pe.cwl

Branch/Commit ID: d76110e0bfc40c874f82e37cef6451d74df4f908

workflow graph mut3.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/mut3.cwl

Branch/Commit ID: 6d8c2a41e2c524e8d746020cc91711ecc3418a23

workflow graph Single-Cell ATAC-Seq Dimensionality Reduction Analysis

Single-Cell ATAC-Seq Dimensionality Reduction Analysis Removes noise and confounding sources of variation by reducing dimensionality of chromatin accessibility data from the outputs of “Single-Cell Multiome ATAC and RNA-Seq Filtering Analysis” pipelines. The results of this workflow are primarily used in “Single-Cell ATAC-Seq Cluster Analysis” or “Single-Cell WNN Cluster Analysis” pipelines.

https://github.com/datirium/workflows.git

Path: workflows/sc-atac-reduce.cwl

Branch/Commit ID: d76110e0bfc40c874f82e37cef6451d74df4f908

workflow graph workflow.cwl

https://github.com/Marco-Salvi/cwl-test.git

Path: workflow.cwl

Branch/Commit ID: 17d4b10e950e527dbbdafc4b6916cbf882d1042c

workflow graph scatter-wf3.cwl#main

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/scatter-wf3.cwl

Branch/Commit ID: 7d7986a6e852ca6e3239c96d3a05dd536c76c903

Packed ID: main