Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph bacterial_kmer

https://github.com/ncbi/pgap.git

Path: bacterial_kmer/wf_bacterial_kmer.cwl

Branch/Commit ID: 5b498b4c4f17bb8f17e6886aa4c5661d7aba34fc

workflow graph Create Genomic Collection for Bacterial Pipeline, ASN.1 input

https://github.com/ncbi/pgap.git

Path: genomic_source/wf_genomic_source_asn.cwl

Branch/Commit ID: 1cfd46014be8d867044cb10d1ddde0cb3068ee84

workflow graph count-lines11-extra-step-wf-noET.cwl

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/count-lines11-extra-step-wf-noET.cwl

Branch/Commit ID: 3e90671b25f7840ef2926ad2bacbf447772dda94

workflow graph search.cwl#main

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/search.cwl

Branch/Commit ID: 7d7986a6e852ca6e3239c96d3a05dd536c76c903

Packed ID: main

workflow graph infuse_pipeline.cwl

https://github.com/cancerit/cgpRna.git

Path: cwls/infuse_pipeline.cwl

Branch/Commit ID: 6d77a181dc077de726bc78a19d30c22399797312

workflow graph 1st-workflow.cwl

https://github.com/common-workflow-language/common-workflow-language.git

Path: v1.0/examples/1st-workflow.cwl

Branch/Commit ID: 735d50b3d97f2f30463c38085fc61cfd4b39a8b5

workflow graph Detect Docm variants

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/docm_cle.cwl

Branch/Commit ID: d297528e53b6c1ecb69b1ab27b8e03323b4463ad

workflow graph FASTQ to BQSR

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/fastq_to_bqsr.cwl

Branch/Commit ID: d2c2f2eb846ae2e9cdcab46e3bb88e42126cb3f5

workflow graph inpdir_update_wf.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/inpdir_update_wf.cwl

Branch/Commit ID: 7d7986a6e852ca6e3239c96d3a05dd536c76c903

workflow graph Trim Galore ATAC-Seq pipeline single-read

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **single-read** experiment with Trim Galore. The pipeline was adapted for ATAC-Seq single-read data analysis by updating genome coverage step. _Trim Galore_ is a wrapper around [Cutadapt](https://github.com/marcelm/cutadapt) and [FastQC](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data. In outputs it returns coordinate sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, reads coverage in a form of BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot (on the base of BAM file). Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Based on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools rmdup` *samtools\_rmdup* to get rid of duplicated reads. If removing duplicates is not required the original input BAM and BAI files return. Otherwise step *samtools\_sort\_index\_after\_rmdup* repeat `samtools sort` and `samtools index` with BAM and BAI files. Right after that `macs2 callpeak` performs peak calling *macs2\_callpeak*. On the base of returned outputs the next step *macs2\_island\_count* calculates the number of islands and estimated fragment size. If the last one is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). If at the very beginning it was set in workflow input parameters to force run peak calling with fixed fragment size, this step is skipped and the original peak calling results are saved. In the next step workflow again calculates the number of islands and estimates fragment size (*macs2\_island\_count\_forced*) for the data obtained from *macs2\_callpeak\_forced* step. If the last one was skipped the results from *macs2\_island\_count\_forced* step are equal to the ones obtained from *macs2\_island\_count* step. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage on the base of input BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads number which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it in BED format. The last one is then being sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. To adapt the pipeline for ATAC-Seq data analysis we calculate genome coverage using only the first 9 bp from every read. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot on the base of BAM file.

https://github.com/datirium/workflows.git

Path: workflows/trim-atacseq-se.cwl

Branch/Commit ID: dda6e8b5ada3f106a2b3bfcc1b151eccf9977726