Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph align_merge_sas

https://github.com/ncbi/pgap.git

Path: task_types/tt_align_merge_sas.cwl

Branch/Commit ID: 3e7a3c1cc1ed5164ae0a51a96f20d7c480d1d70b

workflow graph Cell Ranger Build Reference Indices

Cell Ranger Build Reference Indices ===================================

https://github.com/datirium/workflows.git

Path: workflows/cellranger-mkref.cwl

Branch/Commit ID: c6bfa0de917efb536dd385624fc7702e6748e61d

workflow graph ani_top_n

https://github.com/ncbi/pgap.git

Path: task_types/tt_ani_top_n.cwl

Branch/Commit ID: 23f0ee7a36649ab37cabdd9277b7c82d098be79c

workflow graph Single-Cell RNA-Seq Cluster Analysis

Single-Cell RNA-Seq Cluster Analysis Clusters cells by similarity of gene expression data from the outputs of the “Single-Cell RNA-Seq Dimensionality Reduction Analysis” pipeline. The results of this workflow are used in the “Single-Cell Manual Cell Type Assignment”, “Single-Cell RNA-Seq Differential Expression Analysis”, “Single-Cell RNA-Seq Trajectory Analysis”, and “Single-Cell Differential Abundance Analysis” pipelines.

https://github.com/datirium/workflows.git

Path: workflows/sc-rna-cluster.cwl

Branch/Commit ID: cc6fa135d04737fdde3b4414d6e214cf8c812f6e

workflow graph gathered exome alignment and somatic variant detection for cle purpose

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/somatic_exome_cle_gathered.cwl

Branch/Commit ID: 788bdc99c1d5b6ee7c431c3c011eb30d385c1370

workflow graph tt_hmmsearch_wnode.cwl

https://github.com/ncbi/pgap.git

Path: task_types/tt_hmmsearch_wnode.cwl

Branch/Commit ID: f403d9e26d60d3e3591a03077bc9dfa188b1c2bb

workflow graph ChIP-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **paired-end** experiment. A [FASTQ](http://maq.sourceforge.net/fastq.shtml) input file has to be provided. The pipeline produces a sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, coverage by estimated fragments as a BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot. Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is an unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Depending on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools rmdup` *samtools\_rmdup* to get rid of duplicated reads. If removing duplicates is not required the original BAM and BAI files are returned. Otherwise step *samtools\_sort\_index\_after\_rmdup* repeat `samtools sort` and `samtools index` with BAM and BAI files without duplicates. Next `macs2 callpeak` performs peak calling *macs2\_callpeak* and the next step reports *macs2\_island\_count* the number of islands and estimated fragment size. If the latter is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). It is also possible to force MACS2 to use pre set fragment size in the first place. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage from BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it as a BEDgraph file whichis then sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns nearest genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot from the BAM file.

https://github.com/datirium/workflows.git

Path: workflows/chipseq-pe.cwl

Branch/Commit ID: 64f7fe4438898218fd83133efa25251078f5b27e

workflow graph gcaccess_from_list

https://github.com/ncbi/pgap.git

Path: task_types/tt_gcaccess_from_list.cwl

Branch/Commit ID: f403d9e26d60d3e3591a03077bc9dfa188b1c2bb

workflow graph scatter-valuefrom-wf6.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/scatter-valuefrom-wf6.cwl

Branch/Commit ID: 09323506da219ba3ddb5313bd83022b52cac9adc

workflow graph RNA-Seq pipeline single-read strand specific

Note: should be updated The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for **strand specific single-read** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-read RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-se-dutp.cwl

Branch/Commit ID: f3e44d3b0f198cf5245c49011124dc3b6c2b06fd