Explore Workflows
View already parsed workflows here or click here to add your own
| Graph | Name | Retrieved From | View |
|---|---|---|---|
|
|
count-lines1-wf.cwl
|
Path: cwltool/schemas/v1.0/v1.0/count-lines1-wf.cwl Branch/Commit ID: 2ae8117360a3cd4909d9d3f2b35c30bfffb25d0a |
|
|
|
PCA - Principal Component Analysis
Principal Component Analysis -------------- Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables (entities each of which takes on various numerical values) into a set of values of linearly uncorrelated variables called principal components. The calculation is done by a singular value decomposition of the (centered and possibly scaled) data matrix, not by using eigen on the covariance matrix. This is generally the preferred method for numerical accuracy. |
Path: workflows/pca.cwl Branch/Commit ID: 87f213456b3f966b773d396cce1fe5a272dad858 |
|
|
|
Cell Ranger Count (RNA)
Cell Ranger Count (RNA) Quantifies single-cell gene expression of the sequencing data from a single 10x Genomics library. The results of this workflow are primarily used in either “Single-Cell RNA-Seq Filtering Analysis” or “Cell Ranger Aggregate (RNA, RNA+VDJ)” pipelines. |
Path: workflows/single-cell-preprocess-cellranger.cwl Branch/Commit ID: 549fac35bf6b8b1c25af0f4f6c3f162c40dc130e |
|
|
|
strelka workflow
|
Path: definitions/subworkflows/strelka_and_post_processing.cwl Branch/Commit ID: 31602b94b34ff55876147c7299e1bec47e8d1a31 |
|
|
|
blastp_wnode_naming
|
Path: task_types/tt_blastp_wnode_naming.cwl Branch/Commit ID: d218e081d8f6a4fdab56a38ce0fc2fae6216cecc |
|
|
|
scatter GATK HaplotypeCaller over intervals
|
Path: detect_variants/gatk_haplotypecaller_iterator.cwl Branch/Commit ID: 6eb7d35ad46207f4ff49e84106b717e17331eb4b |
|
|
|
Running cellranger count and lineage inference
|
Path: definitions/subworkflows/single_cell_rnaseq.cwl Branch/Commit ID: 31602b94b34ff55876147c7299e1bec47e8d1a31 |
|
|
|
Generate genome indices for STAR & bowtie
Creates indices for: * [STAR](https://github.com/alexdobin/STAR) v2.5.3a (03/17/2017) PMID: [23104886](https://www.ncbi.nlm.nih.gov/pubmed/23104886) * [bowtie](http://bowtie-bio.sourceforge.net/tutorial.shtml) v1.2.0 (12/30/2016) It performs the following steps: 1. `STAR --runMode genomeGenerate` to generate indices, based on [FASTA](http://zhanglab.ccmb.med.umich.edu/FASTA/) and [GTF](http://mblab.wustl.edu/GTF2.html) input files, returns results as an array of files 2. Outputs indices as [Direcotry](http://www.commonwl.org/v1.0/CommandLineTool.html#Directory) data type 3. Separates *chrNameLength.txt* file from Directory output 4. `bowtie-build` to generate indices requires genome [FASTA](http://zhanglab.ccmb.med.umich.edu/FASTA/) file as input, returns results as a group of main and secondary files |
Path: workflows/genome-indices.cwl Branch/Commit ID: 00ea05e22788029370898fd4c17798b11edf0e57 |
|
|
|
MEME motif
This workflow uses MEME suite for motif finding |
Path: workflows/ChIP-Seq/meme-motif.cwl Branch/Commit ID: 7364aa3799fd3bd7584049228618301bda53a3af |
|
|
|
align_merge_sas
|
Path: task_types/tt_align_merge_sas.cwl Branch/Commit ID: 50d161364e2859ed5c95ef07c9f7234f1431cf31 |
