Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph IMG/VR blast

Run blast against IMG/VR

https://github.com/EBI-Metagenomics/emg-viral-pipeline.git

Path: cwl/src/Tools/IMGvrBlast/imgvr_blast_swf.cwl

Branch/Commit ID: b0ed3f07c8faced85609287759596ad83e154977

workflow graph Deprecated. ChIP-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **paired-end** experiment. A [FASTQ](http://maq.sourceforge.net/fastq.shtml) input file has to be provided. The pipeline produces a sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, coverage by estimated fragments as a BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot. Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is an unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Depending on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools markdup` *samtools\_remove\_duplicates* to get rid of duplicated reads. Next `macs2 callpeak` performs peak calling *macs2\_callpeak* and the next step reports *macs2\_island\_count* the number of islands and estimated fragment size. If the latter is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). It is also possible to force MACS2 to use pre set fragment size in the first place. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage from BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it as a BEDgraph file whichis then sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns nearest genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot from the BAM file.

https://github.com/datirium/workflows.git

Path: workflows/chipseq-pe.cwl

Branch/Commit ID: fa4f172486288a1a9d23864f1d6962d85a453e16

workflow graph Build STAR indices

Workflow runs [STAR](https://github.com/alexdobin/STAR) v2.5.3a (03/17/2017) PMID: [23104886](https://www.ncbi.nlm.nih.gov/pubmed/23104886) to build indices for reference genome provided in a single FASTA file as fasta_file input and GTF annotation file from annotation_gtf_file input. Generated indices are saved in a folder with the name that corresponds to the input genome.

https://github.com/datirium/workflows.git

Path: workflows/star-index.cwl

Branch/Commit ID: cbefc215d8286447620664fb47076ba5d81aa47f

workflow graph Subworkflow to allow calling cnvkit with cram instead of bam files

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/cram_to_cnvkit.cwl

Branch/Commit ID: 22fce2dbdada0c4135b6f0677f78535cf980cb07

workflow graph Filter single sample sv vcf from paired read callers(Manta/Smoove)

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/sv_paired_read_caller_filter.cwl

Branch/Commit ID: a28a8077a8c4dbf117d16799807483a2532af3f3

workflow graph createindex_localref.cwl

https://github.com/yyoshiaki/VIRTUS2.git

Path: workflow/createindex_localref.cwl

Branch/Commit ID: e4f95cc3bd7bbe0d4018b0471bddafe97ceaed0c

workflow graph echo-wf-default.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/echo-wf-default.cwl

Branch/Commit ID: 7d7986a6e852ca6e3239c96d3a05dd536c76c903

workflow graph exome alignment and somatic variant detection for cle purpose

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/somatic_exome_cle.cwl

Branch/Commit ID: 889a077a20c0fdb01f4ed97aa4bc40f920c37a1a

workflow graph scatter-valuefrom-wf1.cwl

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/scatter-valuefrom-wf1.cwl

Branch/Commit ID: 3e90671b25f7840ef2926ad2bacbf447772dda94

workflow graph Merge, annotate, and generate a TSV for SVs

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/merge_svs.cwl

Branch/Commit ID: a28a8077a8c4dbf117d16799807483a2532af3f3