Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Variant calling germline paired-end

A workflow for the Broad Institute's best practices gatk4 germline variant calling pipeline. ## __Outputs__ #### Primary Output files: - bqsr2_indels.vcf, filtered and recalibrated indels (IGV browser) - bqsr2_snps.vcf, filtered and recalibrated snps (IGV browser) - bqsr2_snps.ann.vcf, filtered and recalibrated snps with effect annotations #### Secondary Output files: - sorted_dedup_reads.bam, sorted deduplicated alignments (IGV browser) - raw_indels.vcf, first pass indel calls - raw_snps.vcf, first pass snp calls #### Reports: - overview.md (input list, alignment metrics, variant counts) - insert_size_histogram.pdf - recalibration_plots.pdf - snpEff_summary.html ## __Inputs__ #### General Info - Sample short name/Alias: unique name for sample - Experimental condition: condition, variable, etc name (e.g. \"control\" or \"20C 60min\") - Cells: name of cells used for the sample - Catalog No.: vender catalog number if available - BWA index: BWA index sample that contains reference genome FASTA with associated indices. - SNPEFF database: Name of SNPEFF database to use for SNP effect annotation. - Read 1 file: First FASTQ file (generally contains \"R1\" in the filename) - Read 2 file: Paired FASTQ file (generally contains \"R2\" in the filename) #### Advanced - Ploidy: number of copies per chromosome (default should be 2) - SNP filters: see Step 6 Notes: https://gencore.bio.nyu.edu/variant-calling-pipeline-gatk4/ - Indel filters: see Step 7 Notes: https://gencore.bio.nyu.edu/variant-calling-pipeline-gatk4/ #### SNPEFF notes: Get snpeff databases using `docker run --rm -ti gatk4-dev /bin/bash` then running `java -jar $SNPEFF_JAR databases`. Then, use the first column as SNPEFF input (e.g. \"hg38\"). - hg38, Homo_sapiens (USCS), http://downloads.sourceforge.net/project/snpeff/databases/v4_3/snpEff_v4_3_hg38.zip - mm10, Mus_musculus, http://downloads.sourceforge.net/project/snpeff/databases/v4_3/snpEff_v4_3_mm10.zip - dm6.03, Drosophila_melanogaster, http://downloads.sourceforge.net/project/snpeff/databases/v4_3/snpEff_v4_3_dm6.03.zip - Rnor_6.0.86, Rattus_norvegicus, http://downloads.sourceforge.net/project/snpeff/databases/v4_3/snpEff_v4_3_Rnor_6.0.86.zip - R64-1-1.86, Saccharomyces_cerevisiae, http://downloads.sourceforge.net/project/snpeff/databases/v4_3/snpEff_v4_3_R64-1-1.86.zip ### __Data Analysis Steps__ 1. Trimming the adapters with TrimGalore. - This step is particularly important when the reads are long and the fragments are short - resulting in sequencing adapters at the ends of reads. If adapter is not removed the read will not map. TrimGalore can recognize standard adapters, such as Illumina or Nextera/Tn5 adapters. 2. Generate quality control statistics of trimmed, unmapped sequence data 3. Run germline variant calling pipeline, custom wrapper script implementing Steps 1 - 17 of the Broad Institute's best practices gatk4 germline variant calling pipeline (https://gencore.bio.nyu.edu/variant-calling-pipeline-gatk4/) ### __References__ 1. https://gencore.bio.nyu.edu/variant-calling-pipeline-gatk4/ 2. https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels- 3. https://software.broadinstitute.org/software/igv/VCF

https://github.com/datirium/workflows.git

Path: workflows/vc-germline-pe.cwl

Branch/Commit ID: 22880e0f41d0420a17d643e8a6e8ee18165bbfbf

workflow graph Build STAR indices

Workflow runs [STAR](https://github.com/alexdobin/STAR) v2.5.3a (03/17/2017) PMID: [23104886](https://www.ncbi.nlm.nih.gov/pubmed/23104886) to build indices for reference genome provided in a single FASTA file as fasta_file input and GTF annotation file from annotation_gtf_file input. Generated indices are saved in a folder with the name that corresponds to the input genome.

https://github.com/datirium/workflows.git

Path: workflows/star-index.cwl

Branch/Commit ID: 4dcc405133f22c63478b6091fb5f591b6be8950f

workflow graph Unaligned BAM to BQSR and VCF

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/bam_to_bqsr_no_dup_marking.cwl

Branch/Commit ID: a23f42ef49c10a588fd35a3afaad5de03e253533

workflow graph gathered exome alignment and somatic variant detection for cle purpose

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/somatic_exome_cle_gathered.cwl

Branch/Commit ID: 3034168d652bfa930ba09af20e473a4564a8010d

workflow graph DESeq2 Multi-factor Analysis

DESeq2 Multi-factor Analysis Runs DeSeq2 multi-factor analysis with manual control over major parameters

https://github.com/datirium/workflows.git

Path: workflows/deseq-multi-factor.cwl

Branch/Commit ID: b4d578c2ba4713a5a22163d9f8c7105acda1f22e

workflow graph blastp_wnode_naming

https://github.com/ncbi/pgap.git

Path: task_types/tt_blastp_wnode_naming.cwl

Branch/Commit ID: 16e3915d2a357e2a861b30911c832e5ddc0c1784

workflow graph cluster_blastp_wnode and gpx_qdump combined

https://github.com/ncbi/pgap.git

Path: task_types/tt_cluster_and_qdump.cwl

Branch/Commit ID: 733ab7198a66a0153d0f03c3022ab53c17325ff8

workflow graph RNA-Seq pipeline single-read

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **single-read** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-read RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-se.cwl

Branch/Commit ID: 954bb2f213d97dfef1cddaf9e830169a92ad0c6b

workflow graph step-valuefrom3-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/step-valuefrom3-wf.cwl

Branch/Commit ID: 1eb6bfe3c77aebaf69453a669d21ae7a5a78056f

workflow graph alignment for mouse with qc

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/alignment_wgs_mouse.cwl

Branch/Commit ID: 789267ce0e3fed674ea5212a562315218fcf1bfc