Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Kraken2 Metagenomic pipeline paired-end

This workflow taxonomically classifies paired-end sequencing reads in FASTQ format, that have been optionally adapter trimmed with trimgalore, using Kraken2 and a user-selected pre-built database from a list of [genomic index files](https://benlangmead.github.io/aws-indexes/k2). ### __Inputs__ Kraken2 database for taxonomic classification: - [Viral (0.5 GB)](https://genome-idx.s3.amazonaws.com/kraken/k2_viral_20221209.tar.gz), all refseq viral genomes - [MinusB (8.7 GB)](https://genome-idx.s3.amazonaws.com/kraken/k2_minusb_20221209.tar.gz), standard minus bacteria (archaea, viral, plasmid, human1, UniVec_Core) - [PlusPFP-16 (15.0 GB)](https://genome-idx.s3.amazonaws.com/kraken/k2_pluspfp_16gb_20221209.tar.gz), standard (archaea, bacteria, viral, plasmid, human1, UniVec_Core) + (protozoa, fungi & plant) capped at 16 GB (shrunk via random kmer downselect) - [EuPathDB46 (34.1 GB)](https://genome-idx.s3.amazonaws.com/kraken/k2_eupathdb48_20201113.tar.gz), eukaryotic pathogen genomes with contaminants removed (https://veupathdb.org/veupathdb/app) - [16S_gg_13_5 (73 MB)](https://genome-idx.s3.amazonaws.com/kraken/16S_Greengenes13.5_20200326.tgz), Greengenes 16S rRNA database ([release 13.5](https://greengenes.secondgenome.com/?prefix=downloads/greengenes_database/gg_13_5/), 20200326)\n - [16S_silva_138 (112 MB)](https://genome-idx.s3.amazonaws.com/kraken/16S_Silva138_20200326.tgz), SILVA 16S rRNA database ([release 138.1](https://www.arb-silva.de/documentation/release-1381/), 20200827) Read 1 file: - FASTA/Q input R1 from a paired end library Read 2 file: - FASTA/Q input R2 from a paired end library Number of threads for steps that support multithreading: - Number of threads for steps that support multithreading - default set to `4` Advanced Inputs Tab (Optional): - Number of bases to clip from the 3p end - Number of bases to clip from the 5p end ### __Outputs__ - k2db, an upstream database used by kraken2 classifier ### __Data Analysis Steps__ 1. Trimming the adapters with TrimGalore. - This step is particularly important when the reads are long and the fragments are short - resulting in sequencing adapters at the ends of reads. If adapter is not removed the read will not map. TrimGalore can recognize standard adapters, such as Illumina or Nextera/Tn5 adapters. 2. Generate quality control statistics of trimmed, unmapped sequence data 3. (Optional) Clipping of 5' and/or 3' end by the specified number of bases. 4. Mapping reads to primary genome index with Bowtie. ### __References__ - Wood, D.E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol 20, 257 (2019). https://doi.org/10.1186/s13059-019-1891-0

https://github.com/datirium/workflows.git

Path: workflows/kraken2-classify-pe.cwl

Branch/Commit ID: aebf2355539fdf81fd9082616f8b21440d2691c6

workflow graph Cellranger reanalyze - reruns secondary analysis performed on the feature-barcode matrix

Devel version of Single-Cell Cell Ranger Reanalyze ================================================== Workflow calls \"cellranger aggr\" command to rerun secondary analysis performed on the feature-barcode matrix (dimensionality reduction, clustering and visualization) using different parameter settings. As an input we use filtered feature-barcode matrices in HDF5 format from cellranger count or aggr experiments. Note, we don't pass aggregation_metadata from the upstream cellranger aggr step. Need to address this issue when needed.

https://github.com/datirium/workflows.git

Path: workflows/cellranger-reanalyze.cwl

Branch/Commit ID: 57437c1e9f881411b65f79acd64b7cf14df5b901

workflow graph Filter Protein Alignments

https://github.com/ncbi/pgap.git

Path: protein_alignment/wf_align_filter.cwl

Branch/Commit ID: 656113dcac0de7cef6cff6c688f61441ee05872a

workflow graph Build Bismark indices

Copy fasta_file file to the folder and run run bismark_genome_preparation script to prepare indices for Bismark Methylation Analysis. Bowtie2 aligner is used by default. The name of the output indices folder is equal to the genome input.

https://github.com/datirium/workflows.git

Path: workflows/bismark-index.cwl

Branch/Commit ID: 954bb2f213d97dfef1cddaf9e830169a92ad0c6b

workflow graph Workflow to run pVACseq from detect_variants and rnaseq pipeline outputs

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/pvacseq.cwl

Branch/Commit ID: 49508a2757ff2f49f1c200774a38af1c12b531bf

workflow graph Detect Variants workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/detect_variants.cwl

Branch/Commit ID: 49508a2757ff2f49f1c200774a38af1c12b531bf

workflow graph ChIP-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **paired-end** experiment. A [FASTQ](http://maq.sourceforge.net/fastq.shtml) input file has to be provided. The pipeline produces a sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, coverage by estimated fragments as a BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot. Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is an unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Depending on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools rmdup` *samtools\_rmdup* to get rid of duplicated reads. If removing duplicates is not required the original BAM and BAI files are returned. Otherwise step *samtools\_sort\_index\_after\_rmdup* repeat `samtools sort` and `samtools index` with BAM and BAI files without duplicates. Next `macs2 callpeak` performs peak calling *macs2\_callpeak* and the next step reports *macs2\_island\_count* the number of islands and estimated fragment size. If the latter is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). It is also possible to force MACS2 to use pre set fragment size in the first place. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage from BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it as a BEDgraph file whichis then sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns nearest genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot from the BAM file.

https://github.com/datirium/workflows.git

Path: workflows/chipseq-pe.cwl

Branch/Commit ID: c602e3cdd72ff904dd54d46ba2b5146eb1c57022

workflow graph Filter Protein Seeds; Find ProSplign Alignments

https://github.com/ncbi/pgap.git

Path: protein_alignment/wf_compart_filter_prosplign.cwl

Branch/Commit ID: 656113dcac0de7cef6cff6c688f61441ee05872a

workflow graph blastp_wnode_struct

https://github.com/ncbi/pgap.git

Path: task_types/tt_blastp_wnode_struct.cwl

Branch/Commit ID: 22ffe27d9d4a899def7592d75d5871c1856adbdb

workflow graph umi per-lane alignment subworkflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/umi_alignment.cwl

Branch/Commit ID: e0b3c76e38630fb6234414b5adebfb6a4fb23117