Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph exome alignment and germline variant detection

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/germline_detect_variants.cwl

Branch/Commit ID: 6949082038c1ad36d6e9848b97a2537aef2d3805

workflow graph heatmap-prepare.cwl

Workflow runs homer-make-tag-directory.cwl tool using scatter for the following inputs - bam_file - fragment_size - total_reads `dotproduct` is used as a `scatterMethod`, so one element will be taken from each array to construct each job: 1) bam_file[0] fragment_size[0] total_reads[0] 2) bam_file[1] fragment_size[1] total_reads[1] ... N) bam_file[N] fragment_size[N] total_reads[N] `bam_file`, `fragment_size` and `total_reads` arrays should have the identical order.

https://github.com/datirium/workflows.git

Path: subworkflows/heatmap-prepare.cwl

Branch/Commit ID: e9a24699d8b5ffe64412b1ba0af8448c281b223a

workflow graph taxonomy_check_16S

https://github.com/ncbi/pgap.git

Path: task_types/tt_taxonomy_check_16S.cwl

Branch/Commit ID: 909f26beaf96c2cdfe208f87ecd1e9c3de20b81c

workflow graph kmer_cache_store

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_cache_store.cwl

Branch/Commit ID: 609aead9804a8f31fa9b3dbc7e52105aec487f31

workflow graph Kallisto index pipeline

This workflow indexes the input reference FASTA with kallisto, and generates a kallisto index file (.kdx). This index sample can then be used as input into the kallisto transcript-level quantification workflow (kallisto-quant-pe.cwl), or others that may include this workflow as an upstream source. ### __Inputs__ - FASTA file of the reference genome that will be indexed - number of threads to use for multithreading processes ### __Outputs__ - kallisto index file (.kdx). - stdout log file (output in Overview tab as well) - stderr log file ### __Data Analysis Steps__ 1. cwl calls dockercontainer robertplayer/scidap-kallisto to index reference FASTA with `kallisto index`, generating a kallisto index file. ### __References__ - Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification, Nature Biotechnology 34, 525-527(2016), doi:10.1038/nbt.3519

https://github.com/datirium/workflows.git

Path: workflows/kallisto-index.cwl

Branch/Commit ID: 261c0232a7a40880f2480b811ed2d7e89c463869

workflow graph xenbase-chipseq-pe.cwl

XenBase workflow for analysing ChIP-Seq paired-end data

https://github.com/datirium/workflows.git

Path: workflows/xenbase-chipseq-pe.cwl

Branch/Commit ID: 9a2c389364674221fab3f0f6afdda799e6aa3247

workflow graph RNA-Seq pipeline paired-end strand specific

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **paired-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the paired-end RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 4. Generate BigWig file on the base of sorted BAM file 5. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 6. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-pe-dutp.cwl

Branch/Commit ID: a1f6ca50fcb0881781b3ba0306dd61ebf555eaba

workflow graph protein annotation

Proteins - predict, cluster, identify, annotate

https://github.com/MG-RAST/pipeline.git

Path: CWL/Workflows/protein-annotation.workflow.cwl

Branch/Commit ID: d9cf22cd615542c94f7974e8bce4cf29b24d985f

workflow graph bam-bedgraph-bigwig.cwl

Workflow converts input BAM file into bigWig and bedGraph files. Input BAM file should be sorted by coordinates (required by `bam_to_bedgraph` step). If `split` input is not provided use true by default. Default logic is implemented in `valueFrom` field of `split` input inside `bam_to_bedgraph` step to avoid possible bug in cwltool with setting default values for workflow inputs. `scale` has higher priority over the `mapped_reads_number`. The last one is used to calculate `-scale` parameter for `bedtools genomecov` (step `bam_to_bedgraph`) only in a case when input `scale` is not provided. All logic is implemented inside `bedtools-genomecov.cwl`. `bigwig_filename` defines the output name only for generated bigWig file. `bedgraph_filename` defines the output name for generated bedGraph file and can influence on generated bigWig filename in case when `bigwig_filename` is not provided. All workflow inputs and outputs don't have `format` field to avoid format incompatibility errors when workflow is used as subworkflow.

https://github.com/Barski-lab/workflows.git

Path: tools/bam-bedgraph-bigwig.cwl

Branch/Commit ID: cf678db8304ffaa20c1d6c854364db5ed41803c2

workflow graph exome alignment and somatic variant detection

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/somatic_exome_mouse.cwl

Branch/Commit ID: 27dcb1ae121be6a23057b74332b8c752ea425735