Explore Workflows
View already parsed workflows here or click here to add your own
| Graph | Name | Retrieved From | View |
|---|---|---|---|
|
|
Single-Cell Manual Cell Type Assignment
Single-Cell Manual Cell Type Assignment Assigns identities to cells clustered with any of the “Single-Cell Cluster Analysis” pipelines. For “Single-Cell RNA-Seq Cluster Analysis” the results of this workflow are used in the “Single-Cell RNA-Seq Differential Expression Analysis”, “Single-Cell RNA-Seq Trajectory Analysis”, and — when combined with outputs from the “Cell Ranger Count (RNA+VDJ)” or “Cell Ranger Aggregate (RNA, RNA+VDJ)” workflow — in the “Single-Cell Immune Profiling Analysis” pipeline. For “Single-Cell ATAC-Seq Cluster Analysis”, the results of this workflow are used in the “Single-Cell ATAC-Seq Differential Accessibility Analysis” and “Single-Cell ATAC-Seq Genome Coverage” pipelines. For “Single-Cell WNN Cluster Analysis”, the results of this workflow are used in all of the above, except the “Single-Cell Immune Profiling Analysis” pipeline. |
Path: workflows/sc-ctype-assign.cwl Branch/Commit ID: 549fac35bf6b8b1c25af0f4f6c3f162c40dc130e |
|
|
|
allele-alignreads-se-pe.cwl
Workflow maps FASTQ files from `fastq_files` input into reference genome `reference_star_indices_folder` and insilico generated `insilico_star_indices_folder` genome (concatenated genome for both `strain1` and `strain2` strains). For both genomes STAR is run with `outFilterMultimapNmax` parameter set to 1 to discard all of the multimapped reads. For insilico genome SAM file is generated. Then it's splitted into two SAM files based on strain names and then sorted by coordinates into the BAM format. For reference genome output BAM file from STAR slignment is also coordinate sorted. |
Path: subworkflows/allele-alignreads-se-pe.cwl Branch/Commit ID: 9b4dc225c537685b9c9a32d931d3892d20953dd7 |
|
|
|
Genome conversion and annotation
Workflow for genome annotation from EMBL format |
Path: cwl/workflows/workflow_sapp_others.cwl Branch/Commit ID: 2242521957bb07fc589d6bb07046f6a166bc975a |
|
|
|
group-isoforms-batch.cwl
Workflow runs group-isoforms.cwl tool using scatter for isoforms_file input. genes_filename and common_tss_filename inputs are ignored. |
Path: subworkflows/group-isoforms-batch.cwl Branch/Commit ID: 9b4dc225c537685b9c9a32d931d3892d20953dd7 |
|
|
|
THOR - differential peak calling of ChIP-seq signals with replicates
What is THOR? -------------- THOR is an HMM-based approach to detect and analyze differential peaks in two sets of ChIP-seq data from distinct biological conditions with replicates. THOR performs genomic signal processing, peak calling and p-value calculation in an integrated framework. For more information please refer to: ------------------------------------- Allhoff, M., Sere K., Freitas, J., Zenke, M., Costa, I.G. (2016), Differential Peak Calling of ChIP-seq Signals with Replicates with THOR, Nucleic Acids Research, epub gkw680. |
Path: workflows/rgt-thor.cwl Branch/Commit ID: 22880e0f41d0420a17d643e8a6e8ee18165bbfbf |
|
|
|
umi duplex alignment fastq workflow
|
Path: definitions/pipelines/alignment_umi_duplex.cwl Branch/Commit ID: a59a803e1809a8fbfabca6b8962a8ad66dd01f1d |
|
|
|
Deprecated. RNA-Seq pipeline single-read strand specific
Note: should be updated The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for **strand specific single-read** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-read RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file |
Path: workflows/rnaseq-se-dutp.cwl Branch/Commit ID: 22880e0f41d0420a17d643e8a6e8ee18165bbfbf |
|
|
|
count-lines11-null-step-wf.cwl
|
Path: tests/count-lines11-null-step-wf.cwl Branch/Commit ID: e515226f8ac0f7985cd94dae4a301150adae3050 |
|
|
|
Bismark Methylation PE
Sequence reads are first cleaned from adapters and transformed into fully bisulfite-converted forward (C->T) and reverse read (G->A conversion of the forward strand) versions, before they are aligned to similarly converted versions of the genome (also C->T and G->A converted). Sequence reads that produce a unique best alignment from the four alignment processes against the bisulfite genomes (which are running in parallel) are then compared to the normal genomic sequence and the methylation state of all cytosine positions in the read is inferred. A read is considered to align uniquely if an alignment has a unique best alignment score (as reported by the AS:i field). If a read produces several alignments with the same number of mismatches or with the same alignment score (AS:i field), a read (or a read-pair) is discarded altogether. On the next step we extract the methylation call for every single C analysed. The position of every single C will be written out to a new output file, depending on its context (CpG, CHG or CHH), whereby methylated Cs will be labelled as forward reads (+), non-methylated Cs as reverse reads (-). The output of the methylation extractor is then transformed into a bedGraph and coverage file. The bedGraph counts output is then used to generate a genome-wide cytosine report which reports the number on every single CpG (optionally every single cytosine) in the genome, irrespective of whether it was covered by any reads or not. As this type of report is informative for cytosines on both strands the output may be fairly large (~46mn CpG positions or >1.2bn total cytosine positions in the human genome). |
Path: workflows/bismark-methylation-pe.cwl Branch/Commit ID: bf80c9339d81a78aefb8de661bff998ed86e836e |
|
|
|
extract_gencoll_ids
|
Path: task_types/tt_extract_gencoll_ids.cwl Branch/Commit ID: 66b5bc323dcd23e1b2c14bf4783babf0f15ca43b |
