Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph mut2.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/mut2.cwl

Branch/Commit ID: 5bdb3d3dd47d8d1b3a1685220b4b6ce0f94c055e

workflow graph Trim Galore ATAC-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **paired-end** experiment with Trim Galore. The pipeline was adapted for ATAC-Seq paired-end data analysis by updating genome coverage step. _Trim Galore_ is a wrapper around [Cutadapt](https://github.com/marcelm/cutadapt) and [FastQC](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data. A [FASTQ](http://maq.sourceforge.net/fastq.shtml) input file has to be provided. In outputs it returns coordinate sorted BAM file alongside with index BAI file, quality statistics for both the input FASTQ files, reads coverage in a form of BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot (on the base of BAM file). Workflow starts with running fastx_quality_stats (steps fastx_quality_stats_upstream and fastx_quality_stats_downstream) from FASTX-Toolkit to calculate quality statistics for both upstream and downstream input FASTQ files. At the same time Bowtie is used to align reads from input FASTQ files to reference genome (Step bowtie_aligner). The output of this step is unsorted SAM file which is being sorted and indexed by samtools sort and samtools index (Step samtools_sort_index). Depending on workflow’s input parameters indexed and sorted BAM file could be processed by samtools rmdup (Step samtools_rmdup) to remove all possible read duplicates. In a case when removing duplicates is not necessary the step returns original input BAM and BAI files without any processing. If the duplicates were removed the following step (Step samtools_sort_index_after_rmdup) reruns samtools sort and samtools index with BAM and BAI files, if not - the step returns original unchanged input files. Right after that macs2 callpeak performs peak calling (Step macs2_callpeak). On the base of returned outputs the next step (Step macs2_island_count) calculates the number of islands and estimated fragment size. If the last one is less that 80 (hardcoded in a workflow) macs2 callpeak is rerun again with forced fixed fragment size value (Step macs2_callpeak_forced). If at the very beginning it was set in workflow input parameters to force run peak calling with fixed fragment size, this step is skipped and the original peak calling results are saved. In the next step workflow again calculates the number of islands and estimated fragment size (Step macs2_island_count_forced) for the data obtained from macs2_callpeak_forced step. If the last one was skipped the results from macs2_island_count_forced step are equal to the ones obtained from macs2_island_count step. Next step (Step macs2_stat) is used to define which of the islands and estimated fragment size should be used in workflow output: either from macs2_island_count step or from macs2_island_count_forced step. If input trigger of this step is set to True it means that macs2_callpeak_forced step was run and it returned different from macs2_callpeak step results, so macs2_stat step should return [fragments_new, fragments_old, islands_new], if trigger is False the step returns [fragments_old, fragments_old, islands_old], where sufix \"old\" defines results obtained from macs2_island_count step and sufix \"new\" - from macs2_island_count_forced step. The following two steps (Step bamtools_stats and bam_to_bigwig) are used to calculate coverage on the base of input BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads number which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it in BED format. The last one is then being sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. To adapt the pipeline for ATAC-Seq data analysis we calculate genome coverage using only the first 9 bp from every read. Step get_stat is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step island_intersect assigns genes and regions to the islands obtained from macs2_callpeak_forced. Step average_tag_density is used to calculate data for average tag density plot on the base of BAM file.

https://github.com/datirium/workflows.git

Path: workflows/trim-atacseq-pe.cwl

Branch/Commit ID: 3fc68366adb179927af5528c27b153abaf94494d

workflow graph exome alignment and germline variant detection, with optitype for HLA typing

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/germline_exome_hla_typing.cwl

Branch/Commit ID: a59a803e1809a8fbfabca6b8962a8ad66dd01f1d

workflow graph Seed Protein Alignments

https://github.com/ncbi/pgap.git

Path: protein_alignment/wf_seed_1.cwl

Branch/Commit ID: c17cac4c046f8ba2b8574a121c44a72d2e6b27e6

workflow graph ROSE: rank ordering of super-enhancers

Super-enhancers, consist of clusters of enhancers that are densely occupied by the master regulators and Mediator. Super-enhancers differ from typical enhancers in size, transcription factor density and content, ability to activate transcription, and sensitivity to perturbation. Use to create stitched enhancers, and to separate super-enhancers from typical enhancers using sequencing data (.bam) given a file of previously identified constituent enhancers (.gff)

https://github.com/datirium/workflows.git

Path: workflows/super-enhancer.cwl

Branch/Commit ID: cc6fa135d04737fdde3b4414d6e214cf8c812f6e

workflow graph Filter ChIP/ATAC/cut&run/diffbind peaks for Tag Density Profile or Motif Enrichment analyses

Filters ChIP/ATAC/cut&run/diffbind peaks with the neatest genes assigned for Tag Density Profile or Motif Enrichment analyses ============================================================================================================ Tool filters output from any ChIP/ATAC/cut&run/diffbind pipeline to create a file with regions of interest for Tag Density Profile or Motif Enrichment analyses. Peaks with duplicated coordinates are discarded.

https://github.com/datirium/workflows.git

Path: workflows/filter-peaks-for-heatmap.cwl

Branch/Commit ID: d76110e0bfc40c874f82e37cef6451d74df4f908

workflow graph Filter Protein Alignments

https://github.com/ncbi/pgap.git

Path: protein_alignment/wf_align_filter.cwl

Branch/Commit ID: c17cac4c046f8ba2b8574a121c44a72d2e6b27e6

workflow graph Cell Ranger Count (RNA+ATAC)

Cell Ranger Count (RNA+ATAC) Quantifies single-cell gene expression and chromatin accessibility of the sequencing data from a single 10x Genomics library in a combined manner. The results of this workflow are primarily used in either “Single-Cell Multiome ATAC and RNA-Seq Filtering Analysis” or “Cell Ranger Aggregate (RNA+ATAC)” pipelines.

https://github.com/datirium/workflows.git

Path: workflows/cellranger-arc-count.cwl

Branch/Commit ID: b4d578c2ba4713a5a22163d9f8c7105acda1f22e

workflow graph tt_kmer_top_n.cwl

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_top_n.cwl

Branch/Commit ID: 369e2b6c7f4db75099d258729dec1326f55d2cc5

workflow graph kmer_ref_compare_wnode

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_ref_compare_wnode.cwl

Branch/Commit ID: 369e2b6c7f4db75099d258729dec1326f55d2cc5