Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph scatter-valuefrom-wf4.cwl#main

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/scatter-valuefrom-wf4.cwl

Branch/Commit ID: bbe20f54deea92d9c9cd38cb1f23c4423133d3de

Packed ID: main

workflow graph cache_test_workflow.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/cache_test_workflow.cwl

Branch/Commit ID: 047e69bb169e79fad6a7285ee798c4ecec3b218b

workflow graph DiffBind Multi-factor Analysis

DiffBind Multi-factor Analysis ------------------------------ DiffBind processes ChIP-Seq data enriched for genomic loci where specific protein/DNA binding occurs, including peak sets identified by ChIP-Seq peak callers and aligned sequence read datasets. It is designed to work with multiple peak sets simultaneously, representing different ChIP experiments (antibodies, transcription factor and/or histone marks, experimental conditions, replicates) as well as managing the results of multiple peak callers. For more information please refer to: ------------------------------------- Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, Brown GD, Gojis O, Ellis IO, Green AR, Ali S, Chin S, Palmieri C, Caldas C, Carroll JS (2012). “Differential oestrogen receptor binding is associated with clinical outcome in breast cancer.” Nature, 481, -4.

https://github.com/datirium/workflows.git

Path: workflows/diffbind-multi-factor.cwl

Branch/Commit ID: fa4f172486288a1a9d23864f1d6962d85a453e16

workflow graph Generate genome indices for STAR & bowtie

Creates indices for: * [STAR](https://github.com/alexdobin/STAR) v2.5.3a (03/17/2017) PMID: [23104886](https://www.ncbi.nlm.nih.gov/pubmed/23104886) * [bowtie](http://bowtie-bio.sourceforge.net/tutorial.shtml) v1.2.0 (12/30/2016) It performs the following steps: 1. `STAR --runMode genomeGenerate` to generate indices, based on [FASTA](http://zhanglab.ccmb.med.umich.edu/FASTA/) and [GTF](http://mblab.wustl.edu/GTF2.html) input files, returns results as an array of files 2. Outputs indices as [Direcotry](http://www.commonwl.org/v1.0/CommandLineTool.html#Directory) data type 3. Separates *chrNameLength.txt* file from Directory output 4. `bowtie-build` to generate indices requires genome [FASTA](http://zhanglab.ccmb.med.umich.edu/FASTA/) file as input, returns results as a group of main and secondary files

https://github.com/datirium/workflows.git

Path: workflows/genome-indices.cwl

Branch/Commit ID: d1bef74924efcb8bfaa00987b3f148d5a192b7a9

workflow graph Motif Finding with HOMER with custom background regions

Motif Finding with HOMER with custom background regions --------------------------------------------------- HOMER contains a novel motif discovery algorithm that was designed for regulatory element analysis in genomics applications (DNA only, no protein). It is a differential motif discovery algorithm, which means that it takes two sets of sequences and tries to identify the regulatory elements that are specifically enriched in on set relative to the other. It uses ZOOPS scoring (zero or one occurrence per sequence) coupled with the hypergeometric enrichment calculations (or binomial) to determine motif enrichment. HOMER also tries its best to account for sequenced bias in the dataset. It was designed with ChIP-Seq and promoter analysis in mind, but can be applied to pretty much any nucleic acids motif finding problem. For more information please refer to: ------------------------------------- [Official documentation](http://homer.ucsd.edu/homer/motif/)

https://github.com/datirium/workflows.git

Path: workflows/homer-motif-analysis-bg.cwl

Branch/Commit ID: c0ca7b140d776eec223ceb1c620eda17281860c4

workflow graph Generate genome index bowtie

Workflow makes indices for [bowtie](http://bowtie-bio.sourceforge.net/tutorial.shtml) v1.2.0 (12/30/2016). Executes `bowtie-index` to generate indices requires genome [FASTA](http://zhanglab.ccmb.med.umich.edu/FASTA/) file as input, returns results as a directory

https://github.com/datirium/workflows.git

Path: workflows/bowtie-index.cwl

Branch/Commit ID: 9ee330737f4603e4e959ffe786fbb2046db70a00

workflow graph metrics.cwl

https://github.com/NCI-GDC/gdc-dnaseq-cwl.git

Path: workflows/dnaseq/metrics.cwl

Branch/Commit ID: 469bbb5e318146b3096f307f5d8e9f72cbd6bc06

workflow graph trim-chipseq-pe.cwl

Runs ChIP-Seq BioWardrobe basic analysis with paired-end input data files.

https://github.com/Barski-lab/workflows.git

Path: workflows/trim-chipseq-pe.cwl

Branch/Commit ID: e89b2c17aa5efccef6ca424dec5a0a021bd8d20c

workflow graph output-arrays-file-wf.cwl

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/output-arrays-file-wf.cwl

Branch/Commit ID: e515226f8ac0f7985cd94dae4a301150adae3050

workflow graph Bismark Methylation - pipeline for BS-Seq data analysis

Sequence reads are first cleaned from adapters and transformed into fully bisulfite-converted forward (C->T) and reverse read (G->A conversion of the forward strand) versions, before they are aligned to similarly converted versions of the genome (also C->T and G->A converted). Sequence reads that produce a unique best alignment from the four alignment processes against the bisulfite genomes (which are running in parallel) are then compared to the normal genomic sequence and the methylation state of all cytosine positions in the read is inferred. A read is considered to align uniquely if an alignment has a unique best alignment score (as reported by the AS:i field). If a read produces several alignments with the same number of mismatches or with the same alignment score (AS:i field), a read (or a read-pair) is discarded altogether. On the next step we extract the methylation call for every single C analysed. The position of every single C will be written out to a new output file, depending on its context (CpG, CHG or CHH), whereby methylated Cs will be labelled as forward reads (+), non-methylated Cs as reverse reads (-). The output of the methylation extractor is then transformed into a bedGraph and coverage file. The bedGraph counts output is then used to generate a genome-wide cytosine report which reports the number on every single CpG (optionally every single cytosine) in the genome, irrespective of whether it was covered by any reads or not. As this type of report is informative for cytosines on both strands the output may be fairly large (~46mn CpG positions or >1.2bn total cytosine positions in the human genome).

https://github.com/datirium/workflows.git

Path: workflows/bismark-methylation-se.cwl

Branch/Commit ID: c602e3cdd72ff904dd54d46ba2b5146eb1c57022