Explore Workflows
View already parsed workflows here or click here to add your own
| Graph | Name | Retrieved From | View |
|---|---|---|---|
|
|
tmb_workflow.cwl
Workflow to run the TMB analysis on a batch of samples and merge the results back into a single data clinical file |
Path: cwl/tmb_workflow.cwl Branch/Commit ID: 462f6015c9268a4205b6e81de018a470b8a4a153 |
|
|
|
count-lines5-wf.cwl
|
Path: cwltool/schemas/v1.0/v1.0/count-lines5-wf.cwl Branch/Commit ID: 8010fd2bf1e7090ba6df6ca8c84bbb96e2272d32 |
|
|
|
step-valuefrom2-wf.cwl
|
Path: cwltool/schemas/v1.0/v1.0/step-valuefrom2-wf.cwl Branch/Commit ID: 2ae8117360a3cd4909d9d3f2b35c30bfffb25d0a |
|
|
|
DESeq - differential gene expression analysis
Differential gene expression analysis ===================================== Differential gene expression analysis based on the negative binomial distribution Estimate variance-mean dependence in count data from high-throughput sequencing assays and test for differential expression based on a model using the negative binomial distribution. DESeq1 ------ High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. Simon Anders and Wolfgang Huber propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, [DESeq](http://bioconductor.org/packages/release/bioc/html/DESeq.html), as an R/Bioconductor package DESeq2 ------ In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. [DESeq2](http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html), a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. |
Path: workflows/deseq.cwl Branch/Commit ID: 44214a9d02e6d85b03eb708552ed812ae3d4a733 |
|
|
|
Apply filters to VCF file
|
Path: definitions/subworkflows/filter_vcf_nonhuman.cwl Branch/Commit ID: 4aba7c6591c2f1ebd827a36d325a58738c429bea |
|
|
|
Detect Variants workflow for WGS pipeline
|
Path: definitions/pipelines/detect_variants_wgs.cwl Branch/Commit ID: 9143dc4ebacb9e1df36a712b0be6fa5d982b0c4f |
|
|
|
Generate ATDP heatmap using Homer
Generate ATDP heatmap centered on TSS from an array of input BAM files and genelist TSV file. Returns array of heatmap JSON files with the names that have the same basenames as input BAM files, but with .json extension |
Path: workflows/heatmap.cwl Branch/Commit ID: 9ee330737f4603e4e959ffe786fbb2046db70a00 |
|
|
|
count-lines4-wf.cwl
|
Path: cwltool/schemas/v1.0/v1.0/count-lines4-wf.cwl Branch/Commit ID: 2ae8117360a3cd4909d9d3f2b35c30bfffb25d0a |
|
|
|
Variant calling germline paired-end
A workflow for the Broad Institute's best practices gatk4 germline variant calling pipeline. ## __Outputs__ #### Primary Output files: - bqsr2_indels.vcf, filtered and recalibrated indels (IGV browser) - bqsr2_snps.vcf, filtered and recalibrated snps (IGV browser) - bqsr2_snps.ann.vcf, filtered and recalibrated snps with effect annotations #### Secondary Output files: - sorted_dedup_reads.bam, sorted deduplicated alignments (IGV browser) - raw_indels.vcf, first pass indel calls - raw_snps.vcf, first pass snp calls #### Reports: - overview.md (input list, alignment metrics, variant counts) - insert_size_histogram.pdf - recalibration_plots.pdf - snpEff_summary.html ## __Inputs__ #### General Info - Sample short name/Alias: unique name for sample - Experimental condition: condition, variable, etc name (e.g. \"control\" or \"20C 60min\") - Cells: name of cells used for the sample - Catalog No.: vender catalog number if available - BWA index: BWA index sample that contains reference genome FASTA with associated indices. - SNPEFF database: Name of SNPEFF database to use for SNP effect annotation. - Read 1 file: First FASTQ file (generally contains \"R1\" in the filename) - Read 2 file: Paired FASTQ file (generally contains \"R2\" in the filename) #### Advanced - Ploidy: number of copies per chromosome (default should be 2) - SNP filters: see Step 6 Notes: https://gencore.bio.nyu.edu/variant-calling-pipeline-gatk4/ - Indel filters: see Step 7 Notes: https://gencore.bio.nyu.edu/variant-calling-pipeline-gatk4/ #### SNPEFF notes: Get snpeff databases using `docker run --rm -ti gatk4-dev /bin/bash` then running `java -jar $SNPEFF_JAR databases`. Then, use the first column as SNPEFF input (e.g. \"hg38\"). - hg38, Homo_sapiens (USCS), http://downloads.sourceforge.net/project/snpeff/databases/v4_3/snpEff_v4_3_hg38.zip - mm10, Mus_musculus, http://downloads.sourceforge.net/project/snpeff/databases/v4_3/snpEff_v4_3_mm10.zip - dm6.03, Drosophila_melanogaster, http://downloads.sourceforge.net/project/snpeff/databases/v4_3/snpEff_v4_3_dm6.03.zip - Rnor_6.0.86, Rattus_norvegicus, http://downloads.sourceforge.net/project/snpeff/databases/v4_3/snpEff_v4_3_Rnor_6.0.86.zip - R64-1-1.86, Saccharomyces_cerevisiae, http://downloads.sourceforge.net/project/snpeff/databases/v4_3/snpEff_v4_3_R64-1-1.86.zip ### __Data Analysis Steps__ 1. Trimming the adapters with TrimGalore. - This step is particularly important when the reads are long and the fragments are short - resulting in sequencing adapters at the ends of reads. If adapter is not removed the read will not map. TrimGalore can recognize standard adapters, such as Illumina or Nextera/Tn5 adapters. 2. Generate quality control statistics of trimmed, unmapped sequence data 3. Run germline variant calling pipeline, custom wrapper script implementing Steps 1 - 17 of the Broad Institute's best practices gatk4 germline variant calling pipeline (https://gencore.bio.nyu.edu/variant-calling-pipeline-gatk4/) ### __References__ 1. https://gencore.bio.nyu.edu/variant-calling-pipeline-gatk4/ 2. https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels- 3. https://software.broadinstitute.org/software/igv/VCF |
Path: workflows/vc-germline-pe.cwl Branch/Commit ID: 22880e0f41d0420a17d643e8a6e8ee18165bbfbf |
|
|
|
Build STAR indices
Workflow runs [STAR](https://github.com/alexdobin/STAR) v2.5.3a (03/17/2017) PMID: [23104886](https://www.ncbi.nlm.nih.gov/pubmed/23104886) to build indices for reference genome provided in a single FASTA file as fasta_file input and GTF annotation file from annotation_gtf_file input. Generated indices are saved in a folder with the name that corresponds to the input genome. |
Path: workflows/star-index.cwl Branch/Commit ID: 4dcc405133f22c63478b6091fb5f591b6be8950f |
