Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Compute library complexity

This workflow compute library complexity

https://github.com/ncbi/cwl-ngs-workflows-cbb.git

Path: workflows/File-formats/bedtools-bam-pbc.cwl

Branch/Commit ID: ebf1dd3c243c08634b0b3d9766c0a354903920ee

workflow graph metabarcode (gene amplicon) analysis for fastq files

protein - qc, preprocess, annotation, index, abundance

https://github.com/MG-RAST/pipeline.git

Path: CWL/Workflows/metabarcode-fastq.workflow.cwl

Branch/Commit ID: 6a8727124baf77416ca797982fd4e0689c2a593a

workflow graph Single-Cell ATAC-Seq Filtering Analysis

Single-Cell ATAC-Seq Filtering Analysis Removes low-quality cells from the outputs of either the “Cell Ranger Count (ATAC)” or “Cell Ranger Aggregate (ATAC)” pipeline. The results of this workflow are used in the “Single-Cell ATAC-Seq Dimensionality Reduction Analysis” pipeline.

https://github.com/datirium/workflows.git

Path: workflows/sc-atac-filter.cwl

Branch/Commit ID: d76110e0bfc40c874f82e37cef6451d74df4f908

workflow graph step-valuefrom2-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/step-valuefrom2-wf.cwl

Branch/Commit ID: 5ae5798f1c0c8d2178986b77cfd74edff510877a

workflow graph kmer_seq_entry_extract_wnode

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_seq_entry_extract_wnode.cwl

Branch/Commit ID: 733ab7198a66a0153d0f03c3022ab53c17325ff8

workflow graph RNA-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **paired-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the paired-end RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 4. Generate BigWig file on the base of sorted BAM file 5. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 6. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-pe.cwl

Branch/Commit ID: c602e3cdd72ff904dd54d46ba2b5146eb1c57022

workflow graph Bismark Methylation SE

Sequence reads are first cleaned from adapters and transformed into fully bisulfite-converted forward (C->T) and reverse read (G->A conversion of the forward strand) versions, before they are aligned to similarly converted versions of the genome (also C->T and G->A converted). Sequence reads that produce a unique best alignment from the four alignment processes against the bisulfite genomes (which are running in parallel) are then compared to the normal genomic sequence and the methylation state of all cytosine positions in the read is inferred. A read is considered to align uniquely if an alignment has a unique best alignment score (as reported by the AS:i field). If a read produces several alignments with the same number of mismatches or with the same alignment score (AS:i field), a read (or a read-pair) is discarded altogether. On the next step we extract the methylation call for every single C analysed. The position of every single C will be written out to a new output file, depending on its context (CpG, CHG or CHH), whereby methylated Cs will be labelled as forward reads (+), non-methylated Cs as reverse reads (-). The output of the methylation extractor is then transformed into a bedGraph and coverage file. The bedGraph counts output is then used to generate a genome-wide cytosine report which reports the number on every single CpG (optionally every single cytosine) in the genome, irrespective of whether it was covered by any reads or not. As this type of report is informative for cytosines on both strands the output may be fairly large (~46mn CpG positions or >1.2bn total cytosine positions in the human genome).

https://github.com/datirium/workflows.git

Path: workflows/bismark-methylation-se.cwl

Branch/Commit ID: 7ae3b75bbe614e59cdeaba06047234a6c40c0fe9

workflow graph alignment for mouse with qc

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/alignment_wgs_mouse.cwl

Branch/Commit ID: f615832615c3b41728df8e47b72ef11e37e6a9e5

workflow graph DESeq - differential gene expression analysis

Differential gene expression analysis ===================================== Differential gene expression analysis based on the negative binomial distribution Estimate variance-mean dependence in count data from high-throughput sequencing assays and test for differential expression based on a model using the negative binomial distribution. DESeq1 ------ High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. Simon Anders and Wolfgang Huber propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, [DESeq](http://bioconductor.org/packages/release/bioc/html/DESeq.html), as an R/Bioconductor package DESeq2 ------ In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. [DESeq2](http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html), a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.

https://github.com/datirium/workflows.git

Path: workflows/deseq.cwl

Branch/Commit ID: c602e3cdd72ff904dd54d46ba2b5146eb1c57022

workflow graph iwdr_with_nested_dirs.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/iwdr_with_nested_dirs.cwl

Branch/Commit ID: 3ed10d0ea7ac57550433a89a92bdbe756bdb0e40