Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Single-Cell RNA-Seq Differential Expression Analysis

Single-Cell RNA-Seq Differential Expression Analysis Identifies differentially expressed genes between any two groups of cells, optionally aggregating gene expression data from single-cell to pseudobulk form.

https://github.com/datirium/workflows.git

Path: workflows/sc-rna-de-pseudobulk.cwl

Branch/Commit ID: b4d578c2ba4713a5a22163d9f8c7105acda1f22e

workflow graph step-valuefrom3-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/step-valuefrom3-wf.cwl

Branch/Commit ID: 2ae8117360a3cd4909d9d3f2b35c30bfffb25d0a

workflow graph mut3.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/mut3.cwl

Branch/Commit ID: 63f539ba60e91f0cb3ce7cda2c5da5c65525c375

workflow graph Motif Finding with HOMER with random background regions

Motif Finding with HOMER with random background regions --------------------------------------------------- HOMER contains a novel motif discovery algorithm that was designed for regulatory element analysis in genomics applications (DNA only, no protein). It is a differential motif discovery algorithm, which means that it takes two sets of sequences and tries to identify the regulatory elements that are specifically enriched in on set relative to the other. It uses ZOOPS scoring (zero or one occurrence per sequence) coupled with the hypergeometric enrichment calculations (or binomial) to determine motif enrichment. HOMER also tries its best to account for sequenced bias in the dataset. It was designed with ChIP-Seq and promoter analysis in mind, but can be applied to pretty much any nucleic acids motif finding problem. Here is how we generate background for Motifs Analysis ------------------------------------- 1. Take input file with regions in a form of “chr\" “start\" “end\" 2. Sort and remove duplicates from this regions file 3. Extend each region in 20Kb into both directions 4. Merge all overlapped extended regions 5. Subtract not extended regions from the extended ones 6. Randomly distribute not extended regions within the regions that we got as a result of the previous step 7. Get fasta file from these randomly distributed regions (from the previous step). Use it as background For more information please refer to: ------------------------------------- [Official documentation](http://homer.ucsd.edu/homer/motif/)

https://github.com/datirium/workflows.git

Path: workflows/homer-motif-analysis.cwl

Branch/Commit ID: 12e5256de1b680c551c87fd5db6f3bc65428af67

workflow graph sec-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/sec-wf.cwl

Branch/Commit ID: a67c898958f6affc8cb9de05fe87c9228a4fc63e

workflow graph checkm

https://github.com/ncbi/pgap.git

Path: checkm/wf_checkm.cwl

Branch/Commit ID: 1e16653514fd5629a704516eb447043c9fd0a53b

workflow graph rnaseq-se.cwl

Runs RNA-Seq BioWardrobe basic analysis with single-end data file.

https://github.com/Barski-lab/workflows.git

Path: workflows/rnaseq-se.cwl

Branch/Commit ID: 9a03dbe8829ca649814d9c8bd11fe3a673750a95

workflow graph fp_filter workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/fp_filter.cwl

Branch/Commit ID: 1437aed13d240fd624f78df2c7efb096c5079d73

workflow graph bgzip and index VCF

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/bgzip_and_index.cwl

Branch/Commit ID: 1437aed13d240fd624f78df2c7efb096c5079d73

workflow graph Detect DoCM variants

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/docm_germline.cwl

Branch/Commit ID: 1437aed13d240fd624f78df2c7efb096c5079d73