Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph group-isoforms-batch.cwl

Workflow runs group-isoforms.cwl tool using scatter for isoforms_file input. genes_filename and common_tss_filename inputs are ignored.

https://github.com/datirium/workflows.git

Path: tools/group-isoforms-batch.cwl

Branch/Commit ID: b4d578c2ba4713a5a22163d9f8c7105acda1f22e

workflow graph Feature expression merge - combines feature expression from several experiments

Feature expression merge - combines feature expression from several experiments ========================================================================= Workflows merges RPKM (by default) gene expression from several experiments based on the values from GeneId, Chrom, TxStart, TxEnd and Strand columns (by default). Reported unique columns are renamed based on the experiments names.

https://github.com/datirium/workflows.git

Path: workflows/feature-merge.cwl

Branch/Commit ID: c0ca7b140d776eec223ceb1c620eda17281860c4

workflow graph Cell Ranger Aggregate (RNA, RNA+VDJ)

Cell Ranger Aggregate (RNA, RNA+VDJ) Combines outputs from multiple runs of either “Cell Ranger Count (RNA)” or “Cell Ranger Count (RNA+VDJ)” pipelines. The results of this workflow are primarily used in “Single-Cell RNA-Seq Filtering Analysis” and “Single-Cell Immune Profiling Analysis” pipelines.

https://github.com/datirium/workflows.git

Path: workflows/cellranger-aggr.cwl

Branch/Commit ID: 549fac35bf6b8b1c25af0f4f6c3f162c40dc130e

workflow graph MAnorm SE - quantitative comparison of ChIP-Seq single-read data

What is MAnorm? -------------- MAnorm is a robust model for quantitative comparison of ChIP-Seq data sets of TFs (transcription factors) or epigenetic modifications and you can use it for: * Normalization of two ChIP-seq samples * Quantitative comparison (differential analysis) of two ChIP-seq samples * Evaluating the overlap enrichment of the protein binding sites(peaks) * Elucidating underlying mechanisms of cell-type specific gene regulation How MAnorm works? ---------------- MAnorm uses common peaks of two samples as a reference to build the rescaling model for normalization, which is based on the empirical assumption that if a chromatin-associated protein has a substantial number of peaks shared in two conditions, the binding at these common regions will tend to be determined by similar mechanisms, and thus should exhibit similar global binding intensities across samples. The observed differences on common peaks are presumed to reflect the scaling relationship of ChIP-Seq signals between two samples, which can be applied to all peaks. What do the inputs mean? ---------------- ### General **Experiment short name/Alias** * short name for you experiment to identify among the others **ChIP-Seq SE sample 1** * previously analyzed ChIP-Seq single-read experiment to be used as Sample 1 **ChIP-Seq SE sample 2** * previously analyzed ChIP-Seq single-read experiment to be used as Sample 2 **Genome** * Reference genome to be used for gene assigning ### Advanced **Reads shift size for sample 1** * This value is used to shift reads towards 3' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **Reads shift size for sample 2** * This value is used to shift reads towards 5' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **M-value (log2-ratio) cutoff** * Absolute M-value (log2-ratio) cutoff to define biased (differential binding) peaks. Default: 1.0 **P-value cutoff** * P-value cutoff to define biased peaks. Default: 0.01 **Window size** * Window size to count reads and calculate read densities. 2000 is recommended for sharp histone marks like H3K4me3 and H3K27ac, and 1000 for TFs or DNase-seq. Default: 2000

https://github.com/datirium/workflows.git

Path: workflows/manorm-se.cwl

Branch/Commit ID: fa4f172486288a1a9d23864f1d6962d85a453e16

workflow graph Cell Ranger Reference (RNA, ATAC, RNA+ATAC)

Cell Ranger Reference (RNA, ATAC, RNA+ATAC) Builds a reference genome of a selected species for quantifying gene expression and chromatin accessibility. The results of this workflow are used in all “Cell Ranger Count” and “Cell Ranger Aggregate” pipelines.

https://github.com/datirium/workflows.git

Path: workflows/cellranger-mkref.cwl

Branch/Commit ID: 549fac35bf6b8b1c25af0f4f6c3f162c40dc130e

workflow graph Differential Methylation Workflow

A basic differential methylation analysis workflow using BismarkCov formatted bed files as input to the RnBeads tool. Analysis is conducted on region and sites levels according to the sample groups specified by user (limited to 2 conditions in this workflow implementation). See report html files for detailed descriptions of analyses and results interpretation. ### __Inputs__ *General Info:* - Experiment short name/Alias* - a unique name for the sample (e.g. what was used on tubes while processing it) - Condition 1 name - name defining condition/group 1 - Condition 2 name - name defining condition/group 2 - Bismark coverage files* for condition1 - minumum of 2 is required for analysis - Bismark coverage files* for condition2 - minumum of 2 is required for analysis - Sample genome - available options: hg19, hg38, mm9, mm10, rn5 - Genome type - indicate mismark index used for upstream samples (input for conditions 1 and 2) *Advanced:* - Number of threads for steps that support multithreading - default set to `4` *[BismarkCov formatted bed](https://www.bioinformatics.babraham.ac.uk/projects/bismark/Bismark_User_Guide.pdf): The genome-wide cytosine report (optional) is tab-delimited in the following format (1-based coords): <chromosome> <position> <strand> <count methylated> <count unmethylated> <C-context> <trinucleotide context> ### __Outputs__ Intermediate and final downloadable outputs include: - sig_dm_sites.bed ([bed for IGV](https://genome.ucsc.edu/FAQ/FAQformat.html#format1); sig diff meth sites) - sig_dm_sites_annotated.tsv (tsv for TABLE; for each site above, closest single gene annotation) - Site_id, unique indentifer per methylated site - Site_Chr, chromosome of methylated site - Site_position, 1-based position in chr of methylated site - Site_strand, strand of methylated site - Log2_Meth_Quotient, log2 of the quotient in methylation: log2((mean.g1+epsilon)/(mean.g2+epsilon)), where epsilon:=0.01. In case of paired analysis, it is the mean of the pairwise quotients. - FDR, adjusted p-values, all <0.10 assumed to be significant - Coverage_score, value between 0-1000 reflects strength of mean coverage difference between conditions and equals [1000-(1000/(meancov_g1-meancov_g2)^2](https://www.wolframalpha.com/input?i=solve+1000-%281000%2F%28x%5E2%29%29), if meancov_g1-meancov_g2==0, score=0, elif score<1==1, else score - meancov_g1, mean coverage of condition1 - meancov_g2, mean coverage of condition2 - refSeq_id, RefSeq gene id - Gene_id, gene symbol - Chr, gene chromosome - txStart, gene transcription start position - tsEnd, gene transcription end position - txStrand, gene strand - stdout and stderr log files - Packaged RnBeads reports directory (reports.tar.gz) contains: reports/ ├── configuration ├── data_import.html ├── data_import_data ├── data_import_images ├── data_import_pdfs ├── differential_methylation.html ├── differential_methylation_data ├── differential_methylation_images ├── differential_methylation_pdfs ├── preprocessing.html ├── preprocessing_data ├── preprocessing_images ├── preprocessing_pdfs ├── quality_control.html ├── quality_control_data ├── quality_control_images ├── quality_control_pdfs ├── tracks_and_tables.html ├── tracks_and_tables_data ├── tracks_and_tables_images └── tracks_and_tables_pdfs Reported methylation is in the form of regions (genes, promoters, cpg, tiling) and specific sites: - genes - Ensembl gene definitions are downloaded using the biomaRt package. - promoters - A promoter is defined as the region spanning 1,500 bases upstream and 500 bases downstream of the transcription start site of the corresponding gene - cpg - the CpG islands from the UCSC Genome Browser - tiling - a window size of 5 kilobases are defined over the whole genome - sites - all cytosines in the context of CpGs in the respective genome ### __Data Analysis Steps__ 1. generate sample sheet with associated conditions for testing in RnBeads 2. setup rnbeads analyses in R, and run differential methylation analysis 3. process output diffmeth files for regions and sites 4. find single closest gene annotations for all significantly diffmeth sites 5. package and save rnbeads report directory 6. clean up report dir for html outputs ### __References__ - https://rnbeads.org/materials/example_3/differential_methylation.html - Makambi, K. (2003) Weighted inverse chi-square method for correlated significance tests. Journal of Applied Statistics, 30(2), 225234 - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216143/ - Assenov Y, Müller F, Lutsik P, Walter J, Lengauer T, Bock C. Comprehensive analysis of DNA methylation data with RnBeads. Nat Methods. 2014 Nov;11(11):1138-1140. doi: 10.1038/nmeth.3115. Epub 2014 Sep 28. PMID: 25262207; PMCID: PMC4216143.

https://github.com/datirium/workflows.git

Path: workflows/diffmeth.cwl

Branch/Commit ID: d76110e0bfc40c874f82e37cef6451d74df4f908

workflow graph DESeq2 (LRT) - differential gene expression analysis using likelihood ratio test

Runs DESeq2 using LRT (Likelihood Ratio Test) ============================================= The LRT examines two models for the counts, a full model with a certain number of terms and a reduced model, in which some of the terms of the full model are removed. The test determines if the increased likelihood of the data using the extra terms in the full model is more than expected if those extra terms are truly zero. The LRT is therefore useful for testing multiple terms at once, for example testing 3 or more levels of a factor at once, or all interactions between two variables. The LRT for count data is conceptually similar to an analysis of variance (ANOVA) calculation in linear regression, except that in the case of the Negative Binomial GLM, we use an analysis of deviance (ANODEV), where the deviance captures the difference in likelihood between a full and a reduced model. When one performs a likelihood ratio test, the p values and the test statistic (the stat column) are values for the test that removes all of the variables which are present in the full design and not in the reduced design. This tests the null hypothesis that all the coefficients from these variables and levels of these factors are equal to zero. The likelihood ratio test p values therefore represent a test of all the variables and all the levels of factors which are among these variables. However, the results table only has space for one column of log fold change, so a single variable and a single comparison is shown (among the potentially multiple log fold changes which were tested in the likelihood ratio test). This indicates that the p value is for the likelihood ratio test of all the variables and all the levels, while the log fold change is a single comparison from among those variables and levels. **Technical notes** 1. At least two biological replicates are required for every compared category 2. Metadata file describes relations between compared experiments, for example ``` ,time,condition DH1,day5,WT DH2,day5,KO DH3,day7,WT DH4,day7,KO DH5,day7,KO ``` where `time, condition, day5, day7, WT, KO` should be a single words (without spaces) and `DH1, DH2, DH3, DH4, DH5` correspond to the experiment aliases set in **RNA-Seq experiments** input. 3. Design and reduced formulas should start with **~** and include categories or, optionally, their interactions from the metadata file header. See details in DESeq2 manual [here](https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#interactions) and [here](https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#likelihood-ratio-test) 4. Contrast should be set based on your metadata file header and available categories in a form of `Factor Numerator Denominator`, where `Factor` - column name from metadata file, `Numerator` - category from metadata file to be used as numerator in fold change calculation, `Denominator` - category from metadata file to be used as denominator in fold change calculation. For example `condition WT KO`.

https://github.com/datirium/workflows.git

Path: workflows/deseq-lrt.cwl

Branch/Commit ID: 954bb2f213d97dfef1cddaf9e830169a92ad0c6b

workflow graph indices-header.cwl

https://github.com/datirium/workflows.git

Path: metadata/indices-header.cwl

Branch/Commit ID: 4a80f5b8f86c83af39494ecc309b789aeda77964

workflow graph Single-cell Multiome ATAC and RNA-Seq Filtering Analysis

Single-cell Multiome ATAC and RNA-Seq Filtering Analysis Filters single-cell multiome ATAC and RNA-Seq datasets based on the common QC metrics.

https://github.com/datirium/workflows.git

Path: workflows/sc-multiome-filter.cwl

Branch/Commit ID: 22880e0f41d0420a17d643e8a6e8ee18165bbfbf

workflow graph Trim Galore RNA-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **pair-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ files 2. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-pe.cwl

Branch/Commit ID: 9ee330737f4603e4e959ffe786fbb2046db70a00