Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph workflow_input_sf_expr_array.cwl

https://github.com/common-workflow-language/cwl-utils.git

Path: testdata/workflow_input_sf_expr_array.cwl

Branch/Commit ID: e949503ac0dd7e22ba9b04ac51926d13780f9cee

workflow graph step-valuefrom2-wf_v1_1.cwl

https://github.com/common-workflow-language/cwl-utils.git

Path: testdata/step-valuefrom2-wf_v1_1.cwl

Branch/Commit ID: e949503ac0dd7e22ba9b04ac51926d13780f9cee

workflow graph DESeq - differential gene expression analysis

Differential gene expression analysis ===================================== Differential gene expression analysis based on the negative binomial distribution Estimate variance-mean dependence in count data from high-throughput sequencing assays and test for differential expression based on a model using the negative binomial distribution. DESeq1 ------ High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. Simon Anders and Wolfgang Huber propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, [DESeq](http://bioconductor.org/packages/release/bioc/html/DESeq.html), as an R/Bioconductor package DESeq2 ------ In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. [DESeq2](http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html), a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.

https://github.com/datirium/workflows.git

Path: workflows/deseq.cwl

Branch/Commit ID: ddc35c559d1ac6aab4972fe1a2b63300c4373f54

workflow graph record-output-wf_v1_2.cwl

https://github.com/common-workflow-language/cwl-utils.git

Path: testdata/record-output-wf_v1_2.cwl

Branch/Commit ID: e949503ac0dd7e22ba9b04ac51926d13780f9cee

workflow graph step_valuefrom5_wf_with_id_v1_1.cwl

https://github.com/common-workflow-language/cwl-utils.git

Path: testdata/step_valuefrom5_wf_with_id_v1_1.cwl

Branch/Commit ID: e949503ac0dd7e22ba9b04ac51926d13780f9cee

workflow graph blast.cwl

https://github.com/common-workflow-lab/wdl-cwl-translator.git

Path: wdl2cwl/tests/cwl_files/blast.cwl

Branch/Commit ID: 81d4bdaecebaa843903b40834cb15e350aa047e8

workflow graph mut.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/mut.cwl

Branch/Commit ID: cd779a90a4336563dcf13795111f502372c6af83

workflow graph DiffBind Multi-factor Analysis

DiffBind Multi-factor Analysis ------------------------------ DiffBind processes ChIP-Seq data enriched for genomic loci where specific protein/DNA binding occurs, including peak sets identified by ChIP-Seq peak callers and aligned sequence read datasets. It is designed to work with multiple peak sets simultaneously, representing different ChIP experiments (antibodies, transcription factor and/or histone marks, experimental conditions, replicates) as well as managing the results of multiple peak callers. For more information please refer to: ------------------------------------- Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, Brown GD, Gojis O, Ellis IO, Green AR, Ali S, Chin S, Palmieri C, Caldas C, Carroll JS (2012). “Differential oestrogen receptor binding is associated with clinical outcome in breast cancer.” Nature, 481, -4.

https://github.com/datirium/workflows.git

Path: workflows/diffbind-multi-factor.cwl

Branch/Commit ID: 549fac35bf6b8b1c25af0f4f6c3f162c40dc130e

workflow graph metabarcode (gene amplicon) analysis for fastq files

protein - qc, preprocess, annotation, index, abundance

https://github.com/MG-RAST/pipeline.git

Path: CWL/Workflows/metabarcode-fasta.workflow.cwl

Branch/Commit ID: 6a8727124baf77416ca797982fd4e0689c2a593a

workflow graph Trim Galore RNA-Seq pipeline single-read strand specific

Note: should be updated The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **single-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ file 2. Use STAR to align reads from input FASTQ file according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ file and generate quality statistics file 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ file to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-se-dutp.cwl

Branch/Commit ID: 22880e0f41d0420a17d643e8a6e8ee18165bbfbf