Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph count-lines13-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/count-lines13-wf.cwl

Branch/Commit ID: e8b3565a008d95859fc44227987a54e6a53a8c29

workflow graph format_rrnas_from_seq_entry

https://github.com/ncbi/pgap.git

Path: task_types/tt_format_rrnas_from_seq_entry.cwl

Branch/Commit ID: 66b5bc323dcd23e1b2c14bf4783babf0f15ca43b

workflow graph process VCF workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/strelka_process_vcf.cwl

Branch/Commit ID: 2f65fc96207a71b1cda4e246f808bed056608cd0

workflow graph MAnorm SE - quantitative comparison of ChIP-Seq single-read data

What is MAnorm? -------------- MAnorm is a robust model for quantitative comparison of ChIP-Seq data sets of TFs (transcription factors) or epigenetic modifications and you can use it for: * Normalization of two ChIP-seq samples * Quantitative comparison (differential analysis) of two ChIP-seq samples * Evaluating the overlap enrichment of the protein binding sites(peaks) * Elucidating underlying mechanisms of cell-type specific gene regulation How MAnorm works? ---------------- MAnorm uses common peaks of two samples as a reference to build the rescaling model for normalization, which is based on the empirical assumption that if a chromatin-associated protein has a substantial number of peaks shared in two conditions, the binding at these common regions will tend to be determined by similar mechanisms, and thus should exhibit similar global binding intensities across samples. The observed differences on common peaks are presumed to reflect the scaling relationship of ChIP-Seq signals between two samples, which can be applied to all peaks. What do the inputs mean? ---------------- ### General **Experiment short name/Alias** * short name for you experiment to identify among the others **ChIP-Seq SE sample 1** * previously analyzed ChIP-Seq single-read experiment to be used as Sample 1 **ChIP-Seq SE sample 2** * previously analyzed ChIP-Seq single-read experiment to be used as Sample 2 **Genome** * Reference genome to be used for gene assigning ### Advanced **Reads shift size for sample 1** * This value is used to shift reads towards 3' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **Reads shift size for sample 2** * This value is used to shift reads towards 5' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **M-value (log2-ratio) cutoff** * Absolute M-value (log2-ratio) cutoff to define biased (differential binding) peaks. Default: 1.0 **P-value cutoff** * P-value cutoff to define biased peaks. Default: 0.01 **Window size** * Window size to count reads and calculate read densities. 2000 is recommended for sharp histone marks like H3K4me3 and H3K27ac, and 1000 for TFs or DNase-seq. Default: 2000

https://github.com/datirium/workflows.git

Path: workflows/manorm-se.cwl

Branch/Commit ID: c602e3cdd72ff904dd54d46ba2b5146eb1c57022

workflow graph count-lines6-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/count-lines6-wf.cwl

Branch/Commit ID: a3d565bf8e630101d25d31804cfbceb0a0ba28de

workflow graph Single-Cell RNA-Seq Dimensionality Reduction Analysis

Single-Cell RNA-Seq Dimensionality Reduction Analysis Removes noise and confounding sources of variation by reducing dimensionality of gene expression data from the outputs of “Single-Cell RNA-Seq Filtering Analysis” or “Single-Cell Multiome ATAC and RNA-Seq Filtering Analysis” pipelines. The results of this workflow are primarily used in “Single-Cell RNA-Seq Cluster Analysis” or “Single-Cell WNN Cluster Analysis” pipelines.

https://github.com/datirium/workflows.git

Path: workflows/sc-rna-reduce.cwl

Branch/Commit ID: 549fac35bf6b8b1c25af0f4f6c3f162c40dc130e

workflow graph Trim Galore RNA-Seq pipeline paired-end strand specific

Modified original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **pair-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ files 2. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-pe-dutp.cwl

Branch/Commit ID: 36fd18f11e939d3908b1eca8d2939402f7a99b0f

workflow graph ani_top_n

https://github.com/ncbi/pgap.git

Path: task_types/tt_ani_top_n.cwl

Branch/Commit ID: e668f9c4047f1971ae53040a5af3eccc4bfc3c53

workflow graph env-wf2.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/env-wf2.cwl

Branch/Commit ID: 26870e38cec81af880cd3e4789ae6cee8fc27020

workflow graph scatter-valuefrom-wf5.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/scatter-valuefrom-wf5.cwl

Branch/Commit ID: 3ed10d0ea7ac57550433a89a92bdbe756bdb0e40