Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph Xenbase RNA-Seq pipeline single-read

1. Convert input SRA file into pair of upsrtream and downstream FASTQ files (run fastq-dump) 2. Analyze quality of FASTQ files (run fastqc with each of the FASTQ files) 3. If any of the following fields in fastqc generated report is marked as failed for at least one of input FASTQ files: \"Per base sequence quality\", \"Per sequence quality scores\", \"Overrepresented sequences\", \"Adapter Content\", - trim adapters (run trimmomatic) 4. Align original or trimmed FASTQ files to reference genome, calculate genes and isoforms expression (run RSEM) 5. Count mapped reads number in sorted BAM file (run bamtools stats) 6. Generate genome coverage BED file (run bedtools genomecov) 7. Sort genearted BED file (run sort) 8. Generate genome coverage bigWig file from BED file (run bedGraphToBigWig)

https://github.com/datirium/workflows.git

Path: workflows/xenbase-rnaseq-se.cwl

Branch/Commit ID: 9ee330737f4603e4e959ffe786fbb2046db70a00

workflow graph DESeq - differential gene expression analysis

Differential gene expression analysis ===================================== Differential gene expression analysis based on the negative binomial distribution Estimate variance-mean dependence in count data from high-throughput sequencing assays and test for differential expression based on a model using the negative binomial distribution. DESeq1 ------ High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. Simon Anders and Wolfgang Huber propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, [DESeq](http://bioconductor.org/packages/release/bioc/html/DESeq.html), as an R/Bioconductor package DESeq2 ------ In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. [DESeq2](http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html), a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.

https://github.com/datirium/workflows.git

Path: workflows/deseq.cwl

Branch/Commit ID: 4dcc405133f22c63478b6091fb5f591b6be8950f

workflow graph Nested workflow example

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/nested.cwl

Branch/Commit ID: 047e69bb169e79fad6a7285ee798c4ecec3b218b

workflow graph js-expr-req-wf.cwl#wf

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/js-expr-req-wf.cwl

Branch/Commit ID: a3d565bf8e630101d25d31804cfbceb0a0ba28de

Packed ID: wf

workflow graph cache_asnb_entries

https://github.com/ncbi/pgap.git

Path: task_types/tt_cache_asnb_entries.cwl

Branch/Commit ID: 1ce371c7412debef75edf09e8830d74ac987a668

workflow graph gathered exome alignment and somatic variant detection

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/somatic_exome_gathered.cwl

Branch/Commit ID: a59a803e1809a8fbfabca6b8962a8ad66dd01f1d

workflow graph kmer_seq_entry_extract_wnode

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_seq_entry_extract_wnode.cwl

Branch/Commit ID: ac387721a55fd91df3dcdf16e199354618b136d1

workflow graph env-wf3.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/env-wf3.cwl

Branch/Commit ID: 2ae8117360a3cd4909d9d3f2b35c30bfffb25d0a

workflow graph DiffBind - Differential Binding Analysis of ChIP-Seq or CUTß&RUN/Tag Peak Data

Differential Binding Analysis of ChIP-Seq or CUT&RUN/Tag Peak Data --------------------------------------------------- DiffBind processes ChIP-Seq or CUT&RUN/Tag data enriched for genomic loci where specific protein/DNA binding occurs, including peak sets identified by peak caller tools and aligned sequence read datasets. It is designed to work with multiple peak sets simultaneously, representing different ChIP or CUT&RUN/Tag experiments (antibodies, transcription factor and/or histone marks, experimental conditions, replicates) as well as managing the results of multiple peak callers. For more information please refer to: ------------------------------------- Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, Brown GD, Gojis O, Ellis IO, Green AR, Ali S, Chin S, Palmieri C, Caldas C, Carroll JS (2012). “Differential oestrogen receptor binding is associated with clinical outcome in breast cancer.” Nature, 481, -4.

https://github.com/datirium/workflows.git

Path: workflows/diffbind.cwl

Branch/Commit ID: 22880e0f41d0420a17d643e8a6e8ee18165bbfbf

workflow graph group-isoforms-batch.cwl

Workflow runs group-isoforms.cwl tool using scatter for isoforms_file input. genes_filename and common_tss_filename inputs are ignored.

https://github.com/datirium/workflows.git

Path: tools/group-isoforms-batch.cwl

Branch/Commit ID: ddc35c559d1ac6aab4972fe1a2b63300c4373f54