Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph wgs alignment with qc

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/alignment_wgs.cwl

Branch/Commit ID: 22fce2dbdada0c4135b6f0677f78535cf980cb07

workflow graph scatterfail.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/scatterfail.cwl

Branch/Commit ID: c7c379948c02ba8f048d157f06eb903b1bda9894

workflow graph Replace legacy AML Trio Assay

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/aml_trio_cle.cwl

Branch/Commit ID: a59a803e1809a8fbfabca6b8962a8ad66dd01f1d

workflow graph BAM to BEDPE

Comvert BAM to BEDPE and compress the output

https://github.com/ncbi/cwl-ngs-workflows-cbb.git

Path: workflows/File-formats/bamtobedpe-gzip.cwl

Branch/Commit ID: ebf1dd3c243c08634b0b3d9766c0a354903920ee

workflow graph exome alignment and somatic variant detection for cle purpose

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/somatic_exome_cle.cwl

Branch/Commit ID: a59a803e1809a8fbfabca6b8962a8ad66dd01f1d

workflow graph Bacterial Annotation, pass 4, blastp-based functional annotation (second pass)

https://github.com/ncbi/pgap.git

Path: bacterial_annot/wf_bacterial_annot_pass4.cwl

Branch/Commit ID: 807fe40bca1fbd18ede6250851b9f71de98da69b

workflow graph Trim Galore ChIP-Seq pipeline single-read

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **single-read** experiment with Trim Galore. _Trim Galore_ is a wrapper around [Cutadapt](https://github.com/marcelm/cutadapt) and [FastQC](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data. In outputs it returns coordinate sorted BAM file alongside with index BAI file, quality statistics of the input FASTQ file, reads coverage in a form of BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot (on the base of BAM file). Workflow starts with step *fastx\_quality\_stats* from FASTX-Toolkit to calculate quality statistics for input FASTQ file. At the same time `bowtie` is used to align reads from input FASTQ file to reference genome *bowtie\_aligner*. The output of this step is unsorted SAM file which is being sorted and indexed by `samtools sort` and `samtools index` *samtools\_sort\_index*. Based on workflow’s input parameters indexed and sorted BAM file can be processed by `samtools rmdup` *samtools\_rmdup* to get rid of duplicated reads. If removing duplicates is not required the original input BAM and BAI files return. Otherwise step *samtools\_sort\_index\_after\_rmdup* repeat `samtools sort` and `samtools index` with BAM and BAI files. Right after that `macs2 callpeak` performs peak calling *macs2\_callpeak*. On the base of returned outputs the next step *macs2\_island\_count* calculates the number of islands and estimated fragment size. If the last one is less that 80bp (hardcoded in the workflow) `macs2 callpeak` is rerun again with forced fixed fragment size value (*macs2\_callpeak\_forced*). If at the very beginning it was set in workflow input parameters to force run peak calling with fixed fragment size, this step is skipped and the original peak calling results are saved. In the next step workflow again calculates the number of islands and estimates fragment size (*macs2\_island\_count\_forced*) for the data obtained from *macs2\_callpeak\_forced* step. If the last one was skipped the results from *macs2\_island\_count\_forced* step are equal to the ones obtained from *macs2\_island\_count* step. Next step (*macs2\_stat*) is used to define which of the islands and estimated fragment size should be used in workflow output: either from *macs2\_island\_count* step or from *macs2\_island\_count\_forced* step. If input trigger of this step is set to True it means that *macs2\_callpeak\_forced* step was run and it returned different from *macs2\_callpeak* step results, so *macs2\_stat* step should return [fragments\_new, fragments\_old, islands\_new], if trigger is False the step returns [fragments\_old, fragments\_old, islands\_old], where sufix \"old\" defines results obtained from *macs2\_island\_count* step and sufix \"new\" - from *macs2\_island\_count\_forced* step. The following two steps (*bamtools\_stats* and *bam\_to\_bigwig*) are used to calculate coverage on the base of input BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads number which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it in BED format. The last one is then being sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. Step *get\_stat* is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step *island\_intersect* assigns genes and regions to the islands obtained from *macs2\_callpeak\_forced*. Step *average\_tag\_density* is used to calculate data for average tag density plot on the base of BAM file.

https://github.com/datirium/workflows.git

Path: workflows/trim-chipseq-se.cwl

Branch/Commit ID: 4dcc405133f22c63478b6091fb5f591b6be8950f

workflow graph Subworkflow to allow calling cnvkit with cram instead of bam files

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/cram_to_cnvkit.cwl

Branch/Commit ID: 1249b5d4e23d57ca5e3b8ad6d8e5f10ddb019f68

workflow graph bact_get_kmer_reference

https://github.com/ncbi/pgap.git

Path: task_types/tt_bact_get_kmer_reference.cwl

Branch/Commit ID: 733ab7198a66a0153d0f03c3022ab53c17325ff8

workflow graph THOR - differential peak calling of ChIP-seq signals with replicates

What is THOR? -------------- THOR is an HMM-based approach to detect and analyze differential peaks in two sets of ChIP-seq data from distinct biological conditions with replicates. THOR performs genomic signal processing, peak calling and p-value calculation in an integrated framework. For more information please refer to: ------------------------------------- Allhoff, M., Sere K., Freitas, J., Zenke, M., Costa, I.G. (2016), Differential Peak Calling of ChIP-seq Signals with Replicates with THOR, Nucleic Acids Research, epub gkw680.

https://github.com/datirium/workflows.git

Path: workflows/rgt-thor.cwl

Branch/Commit ID: b5e16e359007150647b14dc6e038f4eb8dccda79