Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph count-lines7-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/count-lines7-wf.cwl

Branch/Commit ID: d7b1bf353dcc43c707c49a018f2870584821d389

workflow graph Immunotherapy Workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/immuno.cwl

Branch/Commit ID: 77ec4f26eb14ed82481828bd9f6ef659cfd8b40f

workflow graph kmer_compare_wnode

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_compare_wnode.cwl

Branch/Commit ID: 4a44218a713aecc488359be275409414ae8c1434

workflow graph AltAnalyze CellHarmony

AltAnalyze CellHarmony ======================

https://github.com/datirium/workflows.git

Path: workflows/altanalyze-cellharmony.cwl

Branch/Commit ID: ebbf23764ede324cabc064bd50647c1f643726fa

workflow graph io-int-optional-wf.cwl

https://github.com/common-workflow-language/common-workflow-language.git

Path: v1.0/v1.0/io-int-optional-wf.cwl

Branch/Commit ID: 9a23706ec061c5d2c02ff60238d218aadf0b5db9

workflow graph kmer_ref_compare_wnode

https://github.com/ncbi/pgap.git

Path: task_types/tt_kmer_ref_compare_wnode.cwl

Branch/Commit ID: 252e7214ac64cb1128881e76743013e61bc7ec38

workflow graph no-outputs-wf.cwl

Workflow without outputs.

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/no-outputs-wf.cwl

Branch/Commit ID: 664835e83eb5e57eee18a04ce7b05fb9d70d77b7

workflow graph output-arrays-int-wf.cwl

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/output-arrays-int-wf.cwl

Branch/Commit ID: 664835e83eb5e57eee18a04ce7b05fb9d70d77b7

workflow graph Trim Galore SMARTer RNA-Seq pipeline paired-end strand specific

https://chipster.csc.fi/manual/library-type-summary.html Modified original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **pair-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the single-end RNA-Seq data. It performs the following steps: 1. Trim adapters from input FASTQ files 2. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 3. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 4. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 5. Generate BigWig file on the base of sorted BAM file 6. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 7. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/trim-rnaseq-pe-smarter-dutp.cwl

Branch/Commit ID: 7030da528559c7106d156284e50ff0ecedab0c4e

workflow graph GSEApy - Gene Set Enrichment Analysis in Python

GSEAPY: Gene Set Enrichment Analysis in Python ============================================== Gene Set Enrichment Analysis is a computational method that determines whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states (e.g. phenotypes). GSEA requires as input an expression dataset, which contains expression profiles for multiple samples. While the software supports multiple input file formats for these datasets, the tab-delimited GCT format is the most common. The first column of the GCT file contains feature identifiers (gene ids or symbols in the case of data derived from RNA-Seq experiments). The second column contains a description of the feature; this column is ignored by GSEA and may be filled with “NA”s. Subsequent columns contain the expression values for each feature, with one sample's expression value per column. It is important to note that there are no hard and fast rules regarding how a GCT file's expression values are derived. The important point is that they are comparable to one another across features within a sample and comparable to one another across samples. Tools such as DESeq2 can be made to produce properly normalized data (normalized counts) which are compatible with GSEA. Documents ============================================== - GSEA Home Page: https://www.gsea-msigdb.org/gsea/index.jsp - Results Interpretation: https://www.gsea-msigdb.org/gsea/doc/GSEAUserGuideTEXT.htm#_Interpreting_GSEA_Results - GSEA User Guide: https://gseapy.readthedocs.io/en/latest/faq.html - GSEAPY Docs: https://gseapy.readthedocs.io/en/latest/introduction.html References ============================================== - Subramanian, Tamayo, et al. (2005, PNAS), https://www.pnas.org/content/102/43/15545 - Mootha, Lindgren, et al. (2003, Nature Genetics), http://www.nature.com/ng/journal/v34/n3/abs/ng1180.html

https://github.com/datirium/workflows.git

Path: workflows/gseapy.cwl

Branch/Commit ID: 7030da528559c7106d156284e50ff0ecedab0c4e