Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph adapter for sequence_align_and_tag

Some workflow engines won't stage files in our nested structure, so parse it out here

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/sequence_align_and_tag_adapter.cwl

Branch/Commit ID: 9c0b1497c467393e1a54735575043dced73e95c4

workflow graph cmsearch-multimodel.cwl

https://github.com/EBI-Metagenomics/ebi-metagenomics-cwl.git

Path: workflows/cmsearch-multimodel.cwl

Branch/Commit ID: 85155424fa5654526517369be2fa479a7d4d90de

workflow graph downsample unaligned BAM and align

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/downsampled_alignment.cwl

Branch/Commit ID: 7b4b489474473c3d2d992a838b89632c2b97dc2c

workflow graph qc-assembled.workflow.cwl

https://github.com/MG-RAST/pipeline.git

Path: CWL/Workflows/qc-assembled.workflow.cwl

Branch/Commit ID: f906212e2c9a88280ae36545e5422f25752aa8f4

workflow graph Cut-n-Run pipeline paired-end

Experimental pipeline for Cut-n-Run analysis. Uses mapping results from the following experiment types: - `chipseq-pe.cwl` - `trim-chipseq-pe.cwl` - `trim-atacseq-pe.cwl` Note, the upstream analyses should not have duplicates removed

https://github.com/datirium/workflows.git

Path: workflows/trim-chipseq-pe-cut-n-run.cwl

Branch/Commit ID: ebbf23764ede324cabc064bd50647c1f643726fa

workflow graph blastp_wnode_naming

https://github.com/ncbi/pgap.git

Path: task_types/tt_blastp_wnode_naming.cwl

Branch/Commit ID: a7fced3ed8c839272c8f3a8db9da7bc8cd50271f

workflow graph CLIP-Seq pipeline for single-read experiment NNNNG

Cross-Linking ImmunoPrecipitation ================================= `CLIP` (`cross-linking immunoprecipitation`) is a method used in molecular biology that combines UV cross-linking with immunoprecipitation in order to analyse protein interactions with RNA or to precisely locate RNA modifications (e.g. m6A). (Uhl|Houwaart|Corrado|Wright|Backofen|2017)(Ule|Jensen|Ruggiu|Mele|2003)(Sugimoto|König|Hussain|Zupan|2012)(Zhang|Darnell|2011) (Ke| Alemu| Mertens| Gantman|2015) CLIP-based techniques can be used to map RNA binding protein binding sites or RNA modification sites (Ke| Alemu| Mertens| Gantman|2015)(Ke| Pandya-Jones| Saito| Fak|2017) of interest on a genome-wide scale, thereby increasing the understanding of post-transcriptional regulatory networks. The identification of sites where RNA-binding proteins (RNABPs) interact with target RNAs opens the door to understanding the vast complexity of RNA regulation. UV cross-linking and immunoprecipitation (CLIP) is a transformative technology in which RNAs purified from _in vivo_ cross-linked RNA-protein complexes are sequenced to reveal footprints of RNABP:RNA contacts. CLIP combined with high-throughput sequencing (HITS-CLIP) is a generalizable strategy to produce transcriptome-wide maps of RNA binding with higher accuracy and resolution than standard RNA immunoprecipitation (RIP) profiling or purely computational approaches. The application of CLIP to Argonaute proteins has expanded the utility of this approach to mapping binding sites for microRNAs and other small regulatory RNAs. Finally, recent advances in data analysis take advantage of cross-link–induced mutation sites (CIMS) to refine RNA-binding maps to single-nucleotide resolution. Once IP conditions are established, HITS-CLIP takes ~8 d to prepare RNA for sequencing. Established pipelines for data analysis, including those for CIMS, take 3–4 d. Workflow -------- CLIP begins with the in-vivo cross-linking of RNA-protein complexes using ultraviolet light (UV). Upon UV exposure, covalent bonds are formed between proteins and nucleic acids that are in close proximity. (Darnell|2012) The cross-linked cells are then lysed, and the protein of interest is isolated via immunoprecipitation. In order to allow for sequence specific priming of reverse transcription, RNA adapters are ligated to the 3' ends, while radiolabeled phosphates are transferred to the 5' ends of the RNA fragments. The RNA-protein complexes are then separated from free RNA using gel electrophoresis and membrane transfer. Proteinase K digestion is then performed in order to remove protein from the RNA-protein complexes. This step leaves a peptide at the cross-link site, allowing for the identification of the cross-linked nucleotide. (König| McGlincy| Ule|2012) After ligating RNA linkers to the RNA 5' ends, cDNA is synthesized via RT-PCR. High-throughput sequencing is then used to generate reads containing distinct barcodes that identify the last cDNA nucleotide. Interaction sites can be identified by mapping the reads back to the transcriptome.

https://github.com/datirium/workflows.git

Path: workflows/clipseq-se.cwl

Branch/Commit ID: c6bfa0de917efb536dd385624fc7702e6748e61d

workflow graph sec-wf-out.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/sec-wf-out.cwl

Branch/Commit ID: dbc4c4c2ad30ed31367b4fbcc3bb4084fdcabaa2

workflow graph Tumor-Only Detect Variants workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/tumor_only_detect_variants.cwl

Branch/Commit ID: 6f9f8a2057c6a9f221a44559f671e87a75c70075

workflow graph tt_hmmsearch_wnode.cwl

https://github.com/ncbi/pgap.git

Path: task_types/tt_hmmsearch_wnode.cwl

Branch/Commit ID: a7fced3ed8c839272c8f3a8db9da7bc8cd50271f