Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph 16S metagenomic paired-end QIIME2 Sample (preprocessing)

A workflow for processing a single 16S sample via a QIIME2 pipeline. ## __Outputs__ #### Output files: - overview.md, list of inputs - demux.qzv, summary visualizations of imported data - alpha-rarefaction.qzv, plot of OTU rarefaction - taxa-bar-plots.qzv, relative frequency of taxomonies barplot ## __Inputs__ #### General Info - Sample short name/Alias: Used for samplename in downstream analyses. Ensure this is the same name used in the metadata samplesheet. - Environment: where the sample was collected - Catalog No.: catalog number if available (optional) - Read 1 FASTQ file: Read 1 FASTQ file from a paired-end sequencing run. - Read 2 FASTQ file: Read 2 FASTQ file that pairs with the input R1 file. - Trim 5' of R1: Recommended if adapters are still on the input sequences. Trims the first J bases from the 5' end of each forward read. - Trim 5' of R2: Recommended if adapters are still on the input sequences. Trims the first K bases from the 5' end of each reverse read. - Truncate 3' of R1: Recommended if quality drops off along the length of the read. Clips the forward read starting M bases from the 5' end (before trimming). - Truncate 3' of R2: Recommended if quality drops off along the length of the read. Clips the reverse read starting N bases from the 5' end (before trimming). - Threads: Number of threads to use for steps that support multithreading. ### __Data Analysis Steps__ 1. Generate FASTX quality statistics for visualization of unmapped, raw FASTQ reads. 2. Import the data, make a qiime artifact (demux.qza), and summary visualization 3. Denoising will detect and correct (where possible) Illumina amplicon sequence data. This process will additionally filter any phiX reads (commonly present in marker gene Illumina sequence data) that are identified in the sequencing data, and will filter chimeric sequences. 4. Generate a phylogenetic tree for diversity analyses and rarefaction processing and plotting. 5. Taxonomy classification of amplicons. Performed using a Naive Bayes classifier trained on the Greengenes2 database \"gg_2022_10_backbone_full_length.nb.qza\". ### __References__ 1. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, and Caporaso JG. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37: 852–857. https://doi.org/10.1038/s41587-019-0209-9

https://github.com/datirium/workflows.git

Path: workflows/qiime2-sample-pe.cwl

Branch/Commit ID: 69643d8c15f5357a320aa7e2f6adb2e71302fd20

workflow graph Align reference proteins plane complete workflow

https://github.com/ncbi/pgap.git

Path: protein_alignment/wf_protein_alignment.cwl

Branch/Commit ID: c64599f5db2437f9323d41cc3d8d9efb20a2667e

workflow graph step_valuefrom5_wf_v1_2.cwl

https://github.com/common-workflow-language/cwl-utils.git

Path: testdata/step_valuefrom5_wf_v1_2.cwl

Branch/Commit ID: 5759b4275906e6cfe13912c8426de2a2237cb4b0

workflow graph workflow_input_sf_expr_v1_1.cwl

https://github.com/common-workflow-language/cwl-utils.git

Path: testdata/workflow_input_sf_expr_v1_1.cwl

Branch/Commit ID: 5759b4275906e6cfe13912c8426de2a2237cb4b0

workflow graph DiffBind - Differential Binding Analysis of ChIP-Seq or CUTß&RUN/Tag Peak Data

Differential Binding Analysis of ChIP-Seq or CUT&RUN/Tag Peak Data --------------------------------------------------- DiffBind processes ChIP-Seq or CUT&RUN/Tag data enriched for genomic loci where specific protein/DNA binding occurs, including peak sets identified by peak caller tools and aligned sequence read datasets. It is designed to work with multiple peak sets simultaneously, representing different ChIP or CUT&RUN/Tag experiments (antibodies, transcription factor and/or histone marks, experimental conditions, replicates) as well as managing the results of multiple peak callers. For more information please refer to: ------------------------------------- Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, Brown GD, Gojis O, Ellis IO, Green AR, Ali S, Chin S, Palmieri C, Caldas C, Carroll JS (2012). “Differential oestrogen receptor binding is associated with clinical outcome in breast cancer.” Nature, 481, -4.

https://github.com/datirium/workflows.git

Path: workflows/diffbind.cwl

Branch/Commit ID: 7030da528559c7106d156284e50ff0ecedab0c4e

workflow graph ValidateTelescopeShadowing

Validate shadowing from masts, camera housing, and other structural elements.

https://github.com/gammasim/workflows.git

Path: workflows/ValidateTelescopeShadowing.cwl

Branch/Commit ID: bf4d4a44a543bcc04f4508ce020751c71550acf5

workflow graph ST610106.cwl

https://github.com/Marco-Salvi/dtc61.git

Path: ST610106.cwl

Branch/Commit ID: f435de822bbe32648738934700d340ba29dea215

workflow graph SetLightGuideEfficiency

Set light guide efficiency as function of wavelength and incident angle.

https://github.com/gammasim/workflows.git

Path: workflows/SetLightGuideEfficiency.cwl

Branch/Commit ID: bf4d4a44a543bcc04f4508ce020751c71550acf5

workflow graph workflow_input_format_expr_v1_1.cwl

https://github.com/common-workflow-language/cwl-utils.git

Path: testdata/workflow_input_format_expr_v1_1.cwl

Branch/Commit ID: 5759b4275906e6cfe13912c8426de2a2237cb4b0

workflow graph SetTriggerThresholdsFromRateScan

Derive trigger thresholds from rate scans taking into account night-sky background illumination and cosmic-ray triggered events.

https://github.com/gammasim/workflows.git

Path: workflows/SetTriggerThresholdsFromRateScan.cwl

Branch/Commit ID: bf4d4a44a543bcc04f4508ce020751c71550acf5