Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph rnaseq-pe-dutp.cwl

Runs RNA-Seq BioWardrobe basic analysis with strand specific pair-end data file.

https://github.com/Barski-lab/workflows.git

Path: workflows/rnaseq-pe-dutp.cwl

Branch/Commit ID: e89b2c17aa5efccef6ca424dec5a0a021bd8d20c

workflow graph step-valuefrom-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/step-valuefrom-wf.cwl

Branch/Commit ID: 2ae8117360a3cd4909d9d3f2b35c30bfffb25d0a

workflow graph default-dir5.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/default-dir5.cwl

Branch/Commit ID: dbc4c4c2ad30ed31367b4fbcc3bb4084fdcabaa2

workflow graph scatter-valuefrom-wf2.cwl

https://github.com/common-workflow-language/cwl-v1.1.git

Path: tests/scatter-valuefrom-wf2.cwl

Branch/Commit ID: 664835e83eb5e57eee18a04ce7b05fb9d70d77b7

workflow graph Deprecated. RNA-Seq pipeline paired-end

The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **RNA-Seq** basic analysis for a **paired-end** experiment. A corresponded input [FASTQ](http://maq.sourceforge.net/fastq.shtml) file has to be provided. Current workflow should be used only with the paired-end RNA-Seq data. It performs the following steps: 1. Use STAR to align reads from input FASTQ files according to the predefined reference indices; generate unsorted BAM file and alignment statistics file 2. Use fastx_quality_stats to analyze input FASTQ files and generate quality statistics files 3. Use samtools sort to generate coordinate sorted BAM(+BAI) file pair from the unsorted BAM file obtained on the step 1 (after running STAR) 4. Generate BigWig file on the base of sorted BAM file 5. Map input FASTQ files to predefined rRNA reference indices using Bowtie to define the level of rRNA contamination; export resulted statistics to file 6. Calculate isoform expression level for the sorted BAM file and GTF/TAB annotation file using GEEP reads-counting utility; export results to file

https://github.com/datirium/workflows.git

Path: workflows/rnaseq-pe.cwl

Branch/Commit ID: 7030da528559c7106d156284e50ff0ecedab0c4e

workflow graph cond-single-source-wf-005.1.cwl

https://github.com/common-workflow-language/cwl-utils.git

Path: testdata/cond-single-source-wf-005.1.cwl

Branch/Commit ID: 7af75226f084349e401b1114f25bdcdee060e127

workflow graph count-lines6-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/count-lines6-wf.cwl

Branch/Commit ID: 7c7615c44b80f8e76e659433f8c7875603ae0b25

workflow graph MAnorm SE - quantitative comparison of ChIP-Seq single-read data

What is MAnorm? -------------- MAnorm is a robust model for quantitative comparison of ChIP-Seq data sets of TFs (transcription factors) or epigenetic modifications and you can use it for: * Normalization of two ChIP-seq samples * Quantitative comparison (differential analysis) of two ChIP-seq samples * Evaluating the overlap enrichment of the protein binding sites(peaks) * Elucidating underlying mechanisms of cell-type specific gene regulation How MAnorm works? ---------------- MAnorm uses common peaks of two samples as a reference to build the rescaling model for normalization, which is based on the empirical assumption that if a chromatin-associated protein has a substantial number of peaks shared in two conditions, the binding at these common regions will tend to be determined by similar mechanisms, and thus should exhibit similar global binding intensities across samples. The observed differences on common peaks are presumed to reflect the scaling relationship of ChIP-Seq signals between two samples, which can be applied to all peaks. What do the inputs mean? ---------------- ### General **Experiment short name/Alias** * short name for you experiment to identify among the others **ChIP-Seq SE sample 1** * previously analyzed ChIP-Seq single-read experiment to be used as Sample 1 **ChIP-Seq SE sample 2** * previously analyzed ChIP-Seq single-read experiment to be used as Sample 2 **Genome** * Reference genome to be used for gene assigning ### Advanced **Reads shift size for sample 1** * This value is used to shift reads towards 3' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **Reads shift size for sample 2** * This value is used to shift reads towards 5' direction to determine the precise binding site. Set as half of the fragment length. Default 100 **M-value (log2-ratio) cutoff** * Absolute M-value (log2-ratio) cutoff to define biased (differential binding) peaks. Default: 1.0 **P-value cutoff** * P-value cutoff to define biased peaks. Default: 0.01 **Window size** * Window size to count reads and calculate read densities. 2000 is recommended for sharp histone marks like H3K4me3 and H3K27ac, and 1000 for TFs or DNase-seq. Default: 2000

https://github.com/datirium/workflows.git

Path: workflows/manorm-se.cwl

Branch/Commit ID: 22880e0f41d0420a17d643e8a6e8ee18165bbfbf

workflow graph format_rrnas_from_seq_entry

https://github.com/ncbi/pgap.git

Path: task_types/tt_format_rrnas_from_seq_entry.cwl

Branch/Commit ID: 1b8d71c75156a1a62bf0477d59db26010e2dcc29

workflow graph Add snv and indel bam-readcount files to a vcf

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/vcf_readcount_annotator.cwl

Branch/Commit ID: b7d9ace34664d3cedb16f2512c8a6dc6debfc8ca