Explore Workflows

View already parsed workflows here or click here to add your own

Graph Name Retrieved From View
workflow graph step-valuefrom3-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/step-valuefrom3-wf.cwl

Branch/Commit ID: 4c905b830371eee45188a53510ba0ee9113fd4c8

workflow graph umi duplex alignment workflow

https://github.com/genome/analysis-workflows.git

Path: definitions/subworkflows/duplex_alignment.cwl

Branch/Commit ID: ddb49a0951d9ad537269d7db3fe8f904495a8bf4

workflow graph Detect Variants workflow for WGS pipeline

https://github.com/genome/analysis-workflows.git

Path: definitions/pipelines/detect_variants_wgs.cwl

Branch/Commit ID: 8dc462a7d9ba1479f764682af99c69d8574cb3dc

workflow graph env-wf2.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/env-wf2.cwl

Branch/Commit ID: c6cced7a2e6389d2eb43342e702677ccb7c7497c

workflow graph 1st-workflow.cwl

https://github.com/common-workflow-language/cwltool.git

Path: tests/wf/1st-workflow.cwl

Branch/Commit ID: 2dce710246e091f0189fab41b589ee062ee94500

workflow graph Kraken2 Metagenomic pipeline paired-end

This workflow taxonomically classifies paired-end sequencing reads in FASTQ format, that have been optionally adapter trimmed with trimgalore, using Kraken2 and a user-selected pre-built database from a list of [genomic index files](https://benlangmead.github.io/aws-indexes/k2). ### __Inputs__ Kraken2 database for taxonomic classification: - [Viral (0.5 GB)](https://genome-idx.s3.amazonaws.com/kraken/k2_viral_20221209.tar.gz), all refseq viral genomes - [MinusB (8.7 GB)](https://genome-idx.s3.amazonaws.com/kraken/k2_minusb_20221209.tar.gz), standard minus bacteria (archaea, viral, plasmid, human1, UniVec_Core) - [PlusPFP-16 (15.0 GB)](https://genome-idx.s3.amazonaws.com/kraken/k2_pluspfp_16gb_20221209.tar.gz), standard (archaea, bacteria, viral, plasmid, human1, UniVec_Core) + (protozoa, fungi & plant) capped at 16 GB (shrunk via random kmer downselect) - [EuPathDB46 (34.1 GB)](https://genome-idx.s3.amazonaws.com/kraken/k2_eupathdb48_20201113.tar.gz), eukaryotic pathogen genomes with contaminants removed (https://veupathdb.org/veupathdb/app) - [16S_gg_13_5 (73 MB)](https://genome-idx.s3.amazonaws.com/kraken/16S_Greengenes13.5_20200326.tgz), Greengenes 16S rRNA database ([release 13.5](https://greengenes.secondgenome.com/?prefix=downloads/greengenes_database/gg_13_5/), 20200326)\n - [16S_silva_138 (112 MB)](https://genome-idx.s3.amazonaws.com/kraken/16S_Silva138_20200326.tgz), SILVA 16S rRNA database ([release 138.1](https://www.arb-silva.de/documentation/release-1381/), 20200827) Read 1 file: - FASTA/Q input R1 from a paired end library Read 2 file: - FASTA/Q input R2 from a paired end library Advanced Inputs Tab (Optional): - Number of bases to clip from the 3p end - Number of bases to clip from the 5p end ### __Outputs__ - k2db, an upstream database used by kraken2 classifier ### __Data Analysis Steps__ 1. Trimming the adapters with TrimGalore. - This step is particularly important when the reads are long and the fragments are short - resulting in sequencing adapters at the ends of reads. If adapter is not removed the read will not map. TrimGalore can recognize standard adapters, such as Illumina or Nextera/Tn5 adapters. 2. Generate quality control statistics of trimmed, unmapped sequence data 3. (Optional) Clipping of 5' and/or 3' end by the specified number of bases. 4. Mapping reads to primary genome index with Bowtie. ### __References__ - Wood, D.E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol 20, 257 (2019). https://doi.org/10.1186/s13059-019-1891-0

https://github.com/datirium/workflows.git

Path: workflows/kraken2-classify-pe.cwl

Branch/Commit ID: 675a3ff982091faf304931e9261aacdbabf51702

workflow graph count-lines2-wf.cwl

https://github.com/common-workflow-language/cwl-v1.2.git

Path: tests/count-lines2-wf.cwl

Branch/Commit ID: 31ec48a8d81ef7c1b2c5e9c0a19e7623efe4a1e2

workflow graph chipseq-gen-bigwig.cwl

https://github.com/datirium/workflows.git

Path: subworkflows/chipseq-gen-bigwig.cwl

Branch/Commit ID: 4106b7dc96e968db291b7a61ecd1641aa3b3dd6d

workflow graph GSEApy - Gene Set Enrichment Analysis in Python

GSEAPY: Gene Set Enrichment Analysis in Python ============================================== Gene Set Enrichment Analysis is a computational method that determines whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states (e.g. phenotypes). GSEA requires as input an expression dataset, which contains expression profiles for multiple samples. While the software supports multiple input file formats for these datasets, the tab-delimited GCT format is the most common. The first column of the GCT file contains feature identifiers (gene ids or symbols in the case of data derived from RNA-Seq experiments). The second column contains a description of the feature; this column is ignored by GSEA and may be filled with “NA”s. Subsequent columns contain the expression values for each feature, with one sample's expression value per column. It is important to note that there are no hard and fast rules regarding how a GCT file's expression values are derived. The important point is that they are comparable to one another across features within a sample and comparable to one another across samples. Tools such as DESeq2 can be made to produce properly normalized data (normalized counts) which are compatible with GSEA. Documents ============================================== - GSEA Home Page: https://www.gsea-msigdb.org/gsea/index.jsp - Results Interpretation: https://www.gsea-msigdb.org/gsea/doc/GSEAUserGuideTEXT.htm#_Interpreting_GSEA_Results - GSEA User Guide: https://gseapy.readthedocs.io/en/latest/faq.html - GSEAPY Docs: https://gseapy.readthedocs.io/en/latest/introduction.html References ============================================== - Subramanian, Tamayo, et al. (2005, PNAS), https://www.pnas.org/content/102/43/15545 - Mootha, Lindgren, et al. (2003, Nature Genetics), http://www.nature.com/ng/journal/v34/n3/abs/ng1180.html - Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma'ayan A. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013; 128(14). - Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma'ayan A. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research. 2016; gkw377 . - Xie Z, Bailey A, Kuleshov MV, Clarke DJB., Evangelista JE, Jenkins SL, Lachmann A, Wojciechowicz ML, Kropiwnicki E, Jagodnik KM, Jeon M, & Ma’ayan A. Gene set knowledge discovery with Enrichr. Current Protocols, 1, e90. 2021. doi: 10.1002/cpz1.90

https://github.com/datirium/workflows.git

Path: workflows/gseapy.cwl

Branch/Commit ID: 675a3ff982091faf304931e9261aacdbabf51702

workflow graph sum-wf.cwl

https://github.com/common-workflow-language/cwltool.git

Path: cwltool/schemas/v1.0/v1.0/sum-wf.cwl

Branch/Commit ID: 665141f319e6b23bd9924b14844f2e979f141944