Explore Workflows
View already parsed workflows here or click here to add your own
| Graph | Name | Retrieved From | View |
|---|---|---|---|
|
|
exome alignment and somatic variant detection
|
Path: definitions/pipelines/somatic_exome.cwl Branch/Commit ID: f9600f9959acdc30259ba7e64de61104c9b01f0b |
|
|
|
phase VCF
|
Path: definitions/subworkflows/phase_vcf.cwl Branch/Commit ID: f9600f9959acdc30259ba7e64de61104c9b01f0b |
|
|
|
Workflow to run pVACseq from detect_variants and rnaseq pipeline outputs
|
Path: definitions/subworkflows/pvacseq.cwl Branch/Commit ID: f9600f9959acdc30259ba7e64de61104c9b01f0b |
|
|
|
exome alignment and germline variant detection, with optitype for HLA typing
|
Path: definitions/pipelines/germline_exome_hla_typing.cwl Branch/Commit ID: f9600f9959acdc30259ba7e64de61104c9b01f0b |
|
|
|
16S metagenomic paired-end QIIME2 Sample (preprocessing)
A workflow for processing a single 16S sample via a QIIME2 pipeline. ## __Outputs__ #### Output files: - overview.md, list of inputs - demux.qzv, summary visualizations of imported data - alpha-rarefaction.qzv, plot of OTU rarefaction - taxa-bar-plots.qzv, relative frequency of taxomonies barplot ## __Inputs__ #### General Info - Sample short name/Alias: Used for samplename in downstream analyses. Ensure this is the same name used in the metadata samplesheet. - Environment: where the sample was collected - Catalog No.: catalog number if available (optional) - Read 1 FASTQ file: Read 1 FASTQ file from a paired-end sequencing run. - Read 2 FASTQ file: Read 2 FASTQ file that pairs with the input R1 file. - Trim 5' of R1: Recommended if adapters are still on the input sequences. Trims the first J bases from the 5' end of each forward read. - Trim 5' of R2: Recommended if adapters are still on the input sequences. Trims the first K bases from the 5' end of each reverse read. - Truncate 3' of R1: Recommended if quality drops off along the length of the read. Clips the forward read starting M bases from the 5' end (before trimming). - Truncate 3' of R2: Recommended if quality drops off along the length of the read. Clips the reverse read starting N bases from the 5' end (before trimming). - Threads: Number of threads to use for steps that support multithreading. ### __Data Analysis Steps__ 1. Generate FASTX quality statistics for visualization of unmapped, raw FASTQ reads. 2. Import the data, make a qiime artifact (demux.qza), and summary visualization 3. Denoising will detect and correct (where possible) Illumina amplicon sequence data. This process will additionally filter any phiX reads (commonly present in marker gene Illumina sequence data) that are identified in the sequencing data, and will filter chimeric sequences. 4. Generate a phylogenetic tree for diversity analyses and rarefaction processing and plotting. 5. Taxonomy classification of amplicons. Performed using a Naive Bayes classifier trained on the Greengenes2 database \"gg_2022_10_backbone_full_length.nb.qza\". ### __References__ 1. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, and Caporaso JG. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37: 852–857. https://doi.org/10.1038/s41587-019-0209-9 |
Path: workflows/qiime2-sample-pe.cwl Branch/Commit ID: 3042f91bf93bd91c0f420c53aaf10874967e8ddc |
|
|
|
count-lines11-wf-noET.cwl
|
Path: tests/count-lines11-wf-noET.cwl Branch/Commit ID: ea9f8634e41824ac3f81c3dde698d5f0eef54f1b |
|
|
|
record-output-wf_v1_0.cwl
|
Path: testdata/record-output-wf_v1_0.cwl Branch/Commit ID: 0ab1d42d10f7311bb4032956c4a6f3d2730d9507 |
|
|
|
wgs alignment and germline variant detection
|
Path: definitions/pipelines/germline_wgs.cwl Branch/Commit ID: 22fce2dbdada0c4135b6f0677f78535cf980cb07 |
|
|
|
Trim Galore ATAC-Seq pipeline paired-end
The original [BioWardrobe's](https://biowardrobe.com) [PubMed ID:26248465](https://www.ncbi.nlm.nih.gov/pubmed/26248465) **ChIP-Seq** basic analysis workflow for a **paired-end** experiment with Trim Galore. The pipeline was adapted for ATAC-Seq paired-end data analysis by updating genome coverage step. _Trim Galore_ is a wrapper around [Cutadapt](https://github.com/marcelm/cutadapt) and [FastQC](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data. A [FASTQ](http://maq.sourceforge.net/fastq.shtml) input file has to be provided. In outputs it returns coordinate sorted BAM file alongside with index BAI file, quality statistics for both the input FASTQ files, reads coverage in a form of BigWig file, peaks calling data in a form of narrowPeak or broadPeak files, islands with the assigned nearest genes and region type, data for average tag density plot (on the base of BAM file). Workflow starts with running fastx_quality_stats (steps fastx_quality_stats_upstream and fastx_quality_stats_downstream) from FASTX-Toolkit to calculate quality statistics for both upstream and downstream input FASTQ files. At the same time Bowtie is used to align reads from input FASTQ files to reference genome (Step bowtie_aligner). The output of this step is unsorted SAM file which is being sorted and indexed by samtools sort and samtools index (Step samtools_sort_index). Depending on workflow’s input parameters indexed and sorted BAM file could be processed by samtools rmdup (Step samtools_rmdup) to remove all possible read duplicates. In a case when removing duplicates is not necessary the step returns original input BAM and BAI files without any processing. If the duplicates were removed the following step (Step samtools_sort_index_after_rmdup) reruns samtools sort and samtools index with BAM and BAI files, if not - the step returns original unchanged input files. Right after that macs2 callpeak performs peak calling (Step macs2_callpeak). On the base of returned outputs the next step (Step macs2_island_count) calculates the number of islands and estimated fragment size. If the last one is less that 80 (hardcoded in a workflow) macs2 callpeak is rerun again with forced fixed fragment size value (Step macs2_callpeak_forced). If at the very beginning it was set in workflow input parameters to force run peak calling with fixed fragment size, this step is skipped and the original peak calling results are saved. In the next step workflow again calculates the number of islands and estimated fragment size (Step macs2_island_count_forced) for the data obtained from macs2_callpeak_forced step. If the last one was skipped the results from macs2_island_count_forced step are equal to the ones obtained from macs2_island_count step. Next step (Step macs2_stat) is used to define which of the islands and estimated fragment size should be used in workflow output: either from macs2_island_count step or from macs2_island_count_forced step. If input trigger of this step is set to True it means that macs2_callpeak_forced step was run and it returned different from macs2_callpeak step results, so macs2_stat step should return [fragments_new, fragments_old, islands_new], if trigger is False the step returns [fragments_old, fragments_old, islands_old], where sufix \"old\" defines results obtained from macs2_island_count step and sufix \"new\" - from macs2_island_count_forced step. The following two steps (Step bamtools_stats and bam_to_bigwig) are used to calculate coverage on the base of input BAM file and save it in BigWig format. For that purpose bamtools stats returns the number of mapped reads number which is then used as scaling factor by bedtools genomecov when it performs coverage calculation and saves it in BED format. The last one is then being sorted and converted to BigWig format by bedGraphToBigWig tool from UCSC utilities. To adapt the pipeline for ATAC-Seq data analysis we calculate genome coverage using only the first 9 bp from every read. Step get_stat is used to return a text file with statistics in a form of [TOTAL, ALIGNED, SUPRESSED, USED] reads count. Step island_intersect assigns genes and regions to the islands obtained from macs2_callpeak_forced. Step average_tag_density is used to calculate data for average tag density plot on the base of BAM file. |
Path: workflows/trim-atacseq-pe.cwl Branch/Commit ID: 730b40bc403263b724399a952c0f3e2d28f13519 |
|
|
|
tt_blastn_wnode
|
Path: task_types/tt_blastn_wnode.cwl Branch/Commit ID: 708e141d99f6e5f30d9402d9f890562606a0d97e |
